Студопедия


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Аппроксимация функций. Метод наименьших квадратов




В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек с координатами (xi, yi), i = 0, 1, 2,... , n, где n - общее количество точек. Как правило, эти табличные данные получены экспериментально и имеют погрешности (рис. 2.5)

Рис.4.2

При аппроксимации желательно получить относительно простую функциональную зависимость (например, многочлен), которая позволила бы "сгладить" экспериментальные погрешности, вычислять значения функции в точках, не содержащихся в исходной таблице.

Эта функциональная зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. В качестве критерия точности чаще всего используют критерий наименьших квадратов, т.е. определяют такую функциональную зависимость f(x), при которой

S =, (4.12)

обращается в минимум.

Погрешность приближения оценивается величиной среднеквадратического уклонения

= . (4.13)

В качестве функциональной зависимости рассмотрим многочлен

Pm(x)=a0 + a1x + a2x2+...+amxm. (4.14)

Формула (4.12) примет вид

S =

Условия минимума S можно записать, приравнивая нулю частные производные S по всем переменным a0, a1, a2, … , am. Получим систему уравнений

= -= 0, или

= 0, k = 0, 1, … , m. (4.15)

Систему уравнений (4.15) перепишем в следующем виде:

a0+ a1+ … +am= , k = 0, 1, … , m (4.16)

Введем обозначения:

ck = , bk = .

Система (4.16) может быть записана так:

a0ck + a1ck+1 + … + ck+mam = bk, k = 0, 1, … , m. (4.17)

Перепишем систему (4.17) в развернутом виде:

c0a0 + c1a1 + c2a2… + cmam = b0

c1a0 + c2a1 + c3a2… + cm+1am = b1

(4.18)

cma0 + cm+1a1 + cm+2a2… + c2mam = bm

Матричная запись системы (4.18) имеет следующий вид:

Ca = b. (4.19)

Для определения коэффициентов ak, k = 0, 1, … , m, и, следовательно, искомого многочлена (4.14) необходимо вычислить суммы ck, bk и решить систему уравнений (4.18). Матрица C системы (4.19) называется матрицей Грама и является симметричной и положительно определенной. Эти полезные свойства используются при решении.

Погрешность приближения в соответствии с формулой (4.13) составит

= . (4.20)

Рассмотрим частные случаи m =1 и m = 2.

1. Линейная аппроксимация (m = 1).

P1(x) = a0 + a1x.

c0 = = n + 1; c1 = = ; c2 = ; (4.21)

b0 = = ; b1 = = . (4.22)

c0 c1 n+1

C = = ,

c1 c2

b = (b0, b1)T = (,)T.

Решение системы уравнений Ca = b найдем по правилу Крамера:

a0 = , a1 = ,

где C - определитель матрицы C, аCi - определитель матрицы Ci, полученной из матрицы C заменой i-го столбца столбцом свободных членов b, i = 1, 2.




Таким образом,

a0 = , a1 = . (4.23)

Алгоритм 4.1 (Алгоритм метода наименьших квадратов. Линейная аппроксимация).

Шаг 1. Ввести исходные данные: xi, yi, i=0, 1, 2, ... , n.

Шаг 2. Вычислить коэффициенты c0, c1, b0, b1 по формулам (4.21), (4.22).

Шаг 3. Вычислить a0, a1 по формулам (4.23).

Шаг 4. Вычислить величину погрешности

1 = . (4.24)

Шаг 5. Вывести на экран результаты: аппроксимирующую линейную функцию P1(x) = a0 + a1x и величину погрешности 1.

2. Квадратичная аппроксимация (m = 2).

P2(x) = a0 + a1x + a2x2.

c0 == n+1; c1 ==; c2 =; c3 =; c4 =. (4.25)

b0 ==; b1 ==; b2 = . (4.26)

c0 c1 c2

C = c1 c2 c3 .

c2 c3 c4

b = (b0, b1, b2)T .

Решение системы уравнений Ca = b найдем по правилу Крамера:

ai = , i = 0, 1,

где C - определитель матрицы C, аCi - определитель матрицы Ci, полученной из матрицы C заменой i-го столбца столбцом свободных членов b.

C = c0c2c4 + 2c1c2c3 - c - сc4 - cc0. (4.27)

b0 c1 c2

C1 = b1 c2 c3 = b0c2c4 + b2c1c3 + b1c2c3 - b2c- b1c1c4 - b0c. (4.28)

b2 c3 c4

c0 b0 c2

C2 = c1 b1 c3 = b1c0c4 + b0c2c3 + b2c1c2 - b1c- b0c1c4 - b2c0c3. (4.29)

c2 b2 c4

c0 c1 b0

C3 = c1 c2 b1 = b2c0c2 + b1c1c2 + b0c1c3 - b0c- b2c - b1c0c3. (4.30)

c2 c3 b2

a0 = , a1 = , a2 = . (4.31)

Алгоритм 4.2 (Алгоритм метода наименьших квадратов. Квадратичная аппроксимация).

Шаг 1. Ввести исходные данные: xi, yi, i=0, 1, 2, ... , n.

Шаг 2. Вычислить коэффициенты c0, c1, c2, c3, c4, b0, b1, b2, по формулам (4.25), (4.26).

Шаг 3. Вычислить C, C1, C2, C3 по формулам (4.27) - (4.30).

Шаг 4. Вычислить a0, a1, a2 по формулам (4.31).



Шаг 5. Вычислить величину погрешности

2 = . (4.32)

Шаг 5. Вывести на экран результаты : аппроксимирующую квадратичную функцию P2(x) = a0 + a1x + a2x2 и величину погрешности 2.

Пример 4.6.

Построим по методу наименьших квадратов многочлены первой и второй степени и оценим степень приближения. Значения yi в точках xi , i =0, 1, 2, 3, 4 приведены в таблице 2.3.

Таблица 4.1

 
i  
xi  
yi -1  
             

Вычислим коэффициенты c0, c1, c2, c3, c4, b0, b1, b2, по формулам (4.25), (4.26):

c0 = 5; c1 = 15; c2 = 55; c3 = 225; c4 = 979;

b0 = 12; b1 = 53; b2 = 235.

1. Линейная аппроксимация (m =1).

Система уравнений для определения коэффициентов a0 и a1 многочлена первой степени P2(x) = a0 + a1x + a2x2 имеет вид

5a0 + 15a1 = 12

15a0 + 55a1 = 53

По формулам (4.23) найдем коэффициенты a0 и a1:

a0 = -2.7, a1 = 1.7.

P1(x) = a0 + a1x = -2.7 + 1.7x.

2. Квадратичная аппроксимация (m =2).

Система уравнений для определения коэффициентов a0, a1 и a2 многочлена второй степени P2(x) = a0 + a1x + a2x2 имеет вид

5a0 + 15a1 + 55a2 = 12

15a0 + 55a1 + 225a2 = 53

55a0 + 225a1 + 979a2 = 235

По формулам (4.31) найдем коэффициенты a0, a1 и a2:

a0 -2.20, a1 1.27, a2 0.07.

P2(x) = a0 + a1x + a2x2 = -2.20 + 1.27x + 0.07x2.

Сравним значения, рассчитанные для функциональной зависимости, с исходными данными. Результаты приведены в табл.2.4.

Таблица 4.2

 
i  
xi  
yi -1  
P1(xi) -1 0.7 2.4 4.1 5.8  
P2(xi) -1 0.62 2.24 6.9  
             

Погрешность приближения в соответствии с формулами (4.24) и (4.32) составит

1 = = 0.245.

2 = = 0.084.





Дата добавления: 2015-06-04; просмотров: 565; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8744 - | 7479 - или читать все...

Читайте также:

 

35.175.191.168 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.009 сек.