Классификация сил, действующих в жидкости

В теоретической механике широко используется понятие сосредоточенной силы, т.е. силы приложенной к одной точке. Однако ни одно реальное твердое тело действие такой силы не могло бы выдержать, так как вызываемое ей напряжение оказалось бы бесконечно большим. Поэтому, даже применительно к твердому телу, представления сил как сосредоточенных рассматривается как чисто условное понятие.

В случае с жидкостью этот прием вообще не применим, поскольку он вступает в противоречие с самой природой жидкости. Частицы в жидкости подвижны и между ними нет жёстких связей, что полностью исключает возможность приложения к жидкости сосредоточенных сил.

Классификация внешних сил, которые могут быть приложены к жидкости, приведена на рис. 1.1. Линейные и растягивающие силы, изображенные на схеме, действуют только в особых случаях. В жидкости действуют только распределенные силы. При этом они разделяются на силы объемные (или массовые), поверхностные и линейные.

Рис. 1.1. Классификация сил, действующих на жидкость

Объемные силы (или массовые) распределены по всему объему жидкости и пропорциональны ее массе. К массовым силам относятся силы тяжести и инерционные силы переносного движения системы, а также электродинамические силы. (Электродинамические силы необходимо учитывать при рассмотрении движения токопроводящих жидкостей в магнитном поле).

Поверхностные силы пропорциональны площади любого данного участка рассматриваемой поверхности (ограничивающего или рассекающего жидкость). Поверхностные силы принято делить на нормальные (действующие перпендикулярно данной поверхности в каждой её точке) и тангенциальные силы (действующие по касательной к поверхности).

Нормальные поверхностные силы, в свою очередь, делятся на сжимающие и растягивающие.

Растягивающие силы в большинстве случаев не принимаются в расчет. Сжимающие же силы, или силы гидростатического давления, направленные по нормали к поверхности, имеют в гидравлике исключительно большое значение.

Тангенциальные силы действуют по касательной к поверхности. Их принято называть силами внутреннего трения. Эти силы обусловлены вязкостью жидкости и проявляются лишь при ее движении.

Линейные силы распределены по некоторой воображаемой линии, рассекающей данную поверхность.Эти силы обычно относятся к длине указанной линии.К ним относятся силы поверхностного натяжения, которые существуют лишь в капельной жидкости и только на поверхности её раздела с областью газа. В случае, когда силы поверхностного натяжениямалы по сравнению с объемными и поверхностными, то ими можно пренебречь. Если они относительно велики, то их необходимо учитывать при решении той или иной специфической задачи как своего рода граничные условия. Например, в задачах о равновесии и движении жидкости в условиях невесомости.

Компоненты массовых сил. Объемные (или массовые) силы в гидростатике принято относить к массе жидкости, на которую они действуют, т.е. выражать через единичные массовые силы. По своему направлению, размерности и числовому значению единичная массовая сила совпадает с соответствующим ускорением. Проекции единичных массовых сил на декартовы оси координат , , принято обозначать соответственно , , (эти обозначения не следует путать с обозначениями координат точки ) (рис. 1.2).

Поверхностные силы обычно относят к площади их действия, т.е. выражают через соответствующие напряжения. Напряжение нормальной сжимающей силы (силы давления) называют гидромеханическим давлением или просто давлением, .

Рис. 1.2. Компоненты массовых сил

На рисунке приняты следующие обозначения:

- масса выделенного объёма жидкости;

- единичная массовая сила, обусловленная ускорением ;

- единичная массовая сила, обусловленная ускорением ;

- результирующая единичная массовая сила, обусловленная ускорением ;

- проекции единичных массовых сил на оси .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: