Способность органов и систем человека противостоять внутреннему облучению

Радиобиологический закон выделяет два типа клеток. Делящиеся клетки и малодифференцированные ткани относятся к радиочувствительным. Такими являются кроветворные клетки костного мозга, зародышевые клетки семенников, кишечный и плоский эпителий. Неделящиеся клетки и дифференцированные ткани относят к радиоустойчивым. К ним относят мозг, мышцы, печень, почки, хрящи, связки. Наибольший вред организму приносит облучение соматических клеток и клеток крови. Соматическая клетка. Клетка состоит из мембраны, цитоплазмы, ядра, рибосом, митохондрий, транспортных молекул тРНК (рибонуклеиновой кислоты), матричных мРНК, молекул АТФ (аденозинтрифосфата), рибосомных рРНК и др. В ядре клетки находится 46 хромосом.

При облучении клетки, например, бета-частицами, прежде всего, повреждается мембрана, через образовавшиеся «бреши» будет вытекать цитоплазма. В этом случае ядро вырабатывает ферменты, которые тРНК транспортируют к местам повреждений мембраны и «зашивают» бреши. Таким образом, тРНК вместо того, чтобы заниматься своим делом – транспортировать аминокислоты в рибосомы для синтеза белка, занимаются «ремонтом» мембраны. Если интенсивность облучения превышает некоторый предел, то тРНК задачу «ремонта» мембраны решить не могут, и клетка погибает. Дальнейшее проникновение бета-частиц в клетку может вызвать разрушения любых органов. При облучении бета-частицами самих молекул тРНК, они повреждаются и не могут выполнять свои функции.

При облучении рибосом, за счет разрушений рибосомной РНК и белка, в рибосоме может быть построен другой белок, который ведет себя как инородное тело. Повреждение матричных мРНК также может привести к формированию «чужого» белка. Если в последующих циклах облучение отсутствует или не приведет к разрушению мРНК, то информация для строительства белка будет достоверной.

Наиболее драматичная ситуация возникает, если поражаются хромосомы и их главная часть – молекулы ДНК. В этом случае клетка или погибает или начинает бесконтрольно делиться. Если учесть воздействие ионизирующего излучения и на другие основные органеллы клетки, то можно выделить следующие последствия облучения:

при облучении ядра клетки возможны: подавление клеточного деления (если клетка делится), двунитчатые разрывы нуклеотидов и хромосомные аберрации, однонитчатые разрывы нуклеотидов и репарация (восстановление) связей, нарушение синтеза ДНК и остановка деления (для делящихся клеток), генные мутации, нарушение транспортной функции и репарация, нарушение синтеза клеточных белков, запуск механизма бесконтрольного деления (в соматических клетках); нарушение проницаемости цитоплазматической мембраны; цитолиз лизосом (лизосомы – цитоплазматические включения, с которыми связано накопление некоторых ферментов и процессы внутриклеточного пищеварения); нарушение энергетического обмена за счет разрушения (повреждения) митохондрий и молекул АТФ (аденозинтрифосфорной кислоты); нарушение синтеза белков в рибосомах; радиационный автолиз эндоплазматической сети (специальная структура цитоплазмы).

Можно выделить три возможные типа реакции на облучение: 1. Радиационный блок митозов (временная задержка деления) –реакция имеет огромное приспособительное значение: увеличивается длительность интерфазы, оттягивается вступление клетки в митоз, создаются благоприятные условия для нормальной работы системы репарации ДНК; 2. Митотическая (репродуктивная) гибель клетки –относится к клеткам, которые не делятся или делятся редко. В клетке не выражены дегенеративные процессы. Показателем выживаемости клетки является ее способность проходить 5 и более делений. Варианты митотической гибели: -клетка гибнет в процессе одного из первых четырех пост радиационных митозов; -облученные клетки после первого радиационного митоза формируют так называемые «гигантские» клетки. Такие клетки способны делиться не более 2–3 раз, после чего погибают. Основная причина митотической гибели клетки – повреждение ее хромосомного аппарата, приводящее к дефициту синтеза ДНК. 3. Интерфазная гибель клетки –наступает до вступления клетки в митоз. Механизм интерфазной гибели: за счет разрывов в молекуле ДНК нарушается структура хроматина. В мембранах идет процесс перекисного окисления липидов. Изменения ДНК-мембранного комплекса вызывают остановку синтеза ДНК. Повреждение мембраны лизосом приводит к выходу из них ферментов – протеаз и ДНК-аз. Эти ферменты разрушают ДНК, что ведет к пикнозу ядра. Повреждение мембран митохондрий ведет к выходу из них кальция, который активирует протеазы. Все это приводит к гибели клетки.

Возможны три варианта последствий облучения клетки:

полное выживание клетки без последствий; процесс выживания и деления осложнен и клетка погибает; появление живой, но измененной клетки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: