Сложение колебаний

Из теорий гармонического анализа известно, что любую периоди­ческую функцию f (x), имеющую период 2π, можно представить в виде тригонометрического ряда:

где a 0, an, bn - коэффициенты этого ряда, определяемые по формулам:

Следовательно, любое сложное колебание можно предста­вить как сумму нескольких простых. Чтобы знать, как зависят парамет­ры сложного колебания от соотношения частот, амплитуд, фаз и направлений слагаемых колебаний, рассмотрим наиболее простые случаи сложения гармонических колебаний.

1. Сложение двух колебаний одного направления.

а) сложение 2-х колебаний одинаковой частоты.

ω1 = ω2 = ω, Т1 = Т2 = Т Уравнения колебаний отличаются только начальной фазой и амплитудой и имеют вид:

Представим оба колебания в виде векторов амплитуды Х01 и Х02, Сложение векторов выполним графически.

Отложим от точки 0 под углом φ1 – вектор Х01, под углом φ2 – вектор Х02. Обе амплитуды вращаются с одинаковой угловой скоростью и против часовой стрелки. Следовательно, угол между амплитудами остается постоянным, равным (φ2 – φ1). Вектор Х0 представляет собой гармоническое колебание, происходящее с той же частотой и амплитудой │Х0│= │Х01+ Х02│ и начальной фазой φ. Из чертежа

Само результирующее колебание имеет вид:

Важно заметить, что амплитуда результирующего колебания зависит от разности фаз (φ2 – φ1) слагаемых колебаний.

Она заключена в пределах:

1) Если разность начальных фаз слагаемых колебаний, равна четному числу π, φ2 – φ1 = к π, то Х0 = Х01 + Х02, tg φ = tg φ1, φ = φ1, к = 0,1,2, …

Колебания однофазные и усиливают друг друга.

 
 


2) Если φ2 – φ1 = (2 к+ 1)π, то Х0 = Х01 - Х02, к = 0,1,2,… следовательно колебания ослабляют друг друга

 
 


3) Если Х01 = Х02 , ω1 = ω2 = ω, φ2 = φ1

Уравнение результирующего колебания имеет вид:

– начальная фаза результирующего колебания.

Результирующее колебание гармоническое, отличающееся по фазе от слагаемых колебаний на половину суммы их начальных фаз.


При φ1 – φ2 = 2 к π, (к = 0,1,2,…) Х0 = 2Х01 – колебания усиливаются.


При φ1 – φ2 = (2 к + 1)π, (к = 0,1,2,…) Х0 = 0 – колебания гасятся.

 
 


2. Сложение взаимно перпендикулярных колебаний.

1) Рассмотрим движение точки М1, участвующей одновременно в 2-х взаимно перпендикулярных колебаниях, частоты которых ω1 и ω2 равны (ω1 = ω2 = ω), амплитуды соответственно а и в.

Колебательный процесс в этом случае описывается системой уравнений:

где φ – угол сдвига фаз.

Для определения уравнения траектории движения точки из системы уравнений исключим время. Из первого уравнения

Второе уравнение перепишем в виде:

Подставив вместо sin ωt и cos ωt их значения будем иметь уравнение движения

Исследуем некоторые частные случаи.

а) при равенстве частот имеет место еще и равенство фаз, т.е. φ = 0.

Уравнение траектории имеет вид

Уравнение прямой, проходящей через начало координат под углом ά:

Смещение от начала координат определяется уравнением

Т.к. уравнение слагаемых колебаний имеет вид

 
 


Таким образом результирующее движение является гармоническим колебанием.

б) составляющая колебания отличается по фазе на π/2. Уравнение траектории имеет вид:

отсюда

- эллипс с плоскостями a и b.

 
 


При равенстве амплитуд траектории представляют собой окружность.

 
 


2) При сложении взаимно перпендикулярных колебаний, частоты которых кратны между собой, например ω1 : ω2 = 1/2, 2/3 и т.д. = m / n,

где m и n – целые числа, колеблющееся тело описывает сложные кривые (наз. Фигурами Лисажу), форма которых определяется отношением частот складываемых колебаний, их амплитудой и разностью фаз между ними

ω1 : ω2 = 2: 1 ω1 : ω2 = 3: 2

               
   
 
   
       
 
 
 


Δφ = 0 Δφ = π / 2 Δφ = 0 Δφ = π / 4


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: