Идеальная жидкость

Даже если жидкость не обладает внутренним трением (вязкостью), можно рассчитать эффект подъёмной силы.

Пусть шар находится в потоке набегающей на него идеальной жидкости. Скорость потока на бесконечности (вблизи она конечно искажается) . Чтобы сымитировать вращение шара, введём циркуляцию скорости вокруг него. Исходя из закона Бернулли, можно получить, что полная сила, действующая в таком случае на шар, равна:

.

Видно, что:

1. полная сила перпендикулярна потоку, то есть сила сопротивления потока идеальной жидкости на шар равна нулю (парадокс Даламбера)

2. сила, в зависимости от соотношения направлений циркуляции и скорости потока, сводится к подъёмной либо опускающей силе.

Вязкая жидкость

Следующее уравнение описывает необходимые величины для подсчёта подъёмной силы, создаваемой вращением шара в реальной жидкости.

F — подъёмная сила

— плотность жидкости.

V — скорость шара

A — поперечная площадь шара

Cl — коэффициент подъёмной силы (англ.)

Коэффициент подъёмной силы может быть определён из графиков экспериментальных данных с использованием числа Рейнольдса и коэффициента вращения ((угловая скорость*диаметр)/(2*линейная скорость)). Для коэффициентов вращения от 0,5 до 4,5 коэффициент подъёмной силы находится в диапазоне от 0,2 до 0,6.

Подъёмная сила крыла создаётся за счёт разницы давлений воздуха на нижней и верхней поверхностях. Давление же воздуха зависит от распределения скоростей воздушных потоков вблизи этих поверхностей.

Одним из распространённых объяснений принципа действия крыла является ударная модель Ньютона: частицы воздуха, сталкиваясь с нижней поверхностью крыла, стоящего под углом к потоку, упруго отскакивают вниз («скос потока»), согласно третьему закону Ньютона, толкая крыло вверх. Данная упрощенная модель учитывает закон сохранения импульса, но полностью пренебрегает обтеканием верхней поверхности крыла, вследствие чего она даёт заниженную величину подъёмной силы.

В другой распространённой, но неверной модели возникновение подъёмной силы объясняется разностью давлений на верхней и нижней сторонах профиля, возникающей согласно закону Бернулли: на нижней поверхности крыла скорость протекания воздуха оказывается ниже, чем на верхней, поэтому подъёмная сила крыла направлена снизу вверх. Обычно рассматривается крыло с плоско-выпуклым профилем: нижняя поверхность плоская, верхняя — выпуклая. Набегающий поток разделяется крылом на две части — верхнюю и нижнюю, — при этом, вследствие выпуклости крыла, верхняя часть потока должна пройти больший путь, нежели нижняя. Для обеспечения неразрывности потока скорость воздуха над крылом должна быть больше, чем под ним, из чего следует, что давление на верхней стороне профиля крыла ниже, чем на нижней; этой разностью давлений обуславливается подъёмная сила. Однако данная модель не объясняет возникновение подъёмной силы на двояковыпуклых симметричных или на вогнуто-выпуклых профилях, когда потоки сверху и снизу проходят одинаковое расстояние.

Для устранения этих недостатков Н. Е. Жуковский ввёл понятие циркуляции скорости потока; в 1904 году им была сформулирована теорема Жуковского. Циркуляция скорости позволяет учесть скос потока и получать значительно более точные результаты при расчётах.

Положение закрылков (сверху вниз):
1) Наибольшая эффективность (набор высоты, горизонтальный полёт, снижение)
2) Наибольшая площадь крыла (взлёт)
3) Наибольшая подъёмная сила, высокое сопротивление (заход на посадку)
4) Наибольшее сопротивление, уменьшенная подъёмная сила (после посадки)

Одним из главных недостатков вышеприведённых объяснений является то, что они не учитывают вязкость воздуха, то есть перенос энергии и импульса между отдельными слоями потока (что и является причиной циркуляции). Существенное влияние на крыло может оказать поверхность земли, «отражающая» возмущения потока, вызванные крылом, и возвращающая часть импульса обратно (экранный эффект).

Также в приведённых объяснениях не раскрывается механизм передачи энергии от крыла к потоку, то есть совершения работы самим крылом. Хотя верхняя часть воздушного потока действительно имеет повышенную скорость, геометрическая длина пути не имеет к этому отношения — это вызвано взаимодействием слоёв неподвижного и подвижного воздуха и верхней поверхности крыла. Поток воздуха, следующий вдоль верхней поверхности крыла, «прилипает» к ней и старается следовать вдоль этой поверхности даже после точки перегиба профиля (эффект Коанды). Благодаря поступательному движению, крыло совершает работу по разгону этой части потока. Достигнув точки отрыва у задней кромки, воздух продолжает своё движение вниз по инерции вместе с массой, отклонённой нижней поверхностью крыла, что в сумме вызывает скос потока и возникновение реактивного импульса. Вертикальная часть этого импульса и вызывает подъёмную силу, уравновешивающую силу тяжести, горизонтальная же часть уравновешивается лобовым сопротивлением.

На самом деле, обтекание крыла является очень сложным трёхмерным нелинейным, и зачастую нестационарным, процессом. Подъёмная сила крыла зависит от его площади, профиля, формы в плане, а также от угла атаки, скорости и плотности потока (числа Маха) и от целого ряда других факторов.

Уточним понятие давления на случай движущейся жидкости. В случае неподвижной жидкости давление обусловлено ее сжатием или растяжением. Возникающие при этом силы упругости, действующие на произвольную площадку внутри жидкости, не зависят от ориентации последней. Для иллюстрации высказанного утверждения проведем такой эксперимент (хотя бы мысленный).

В качестве измерителя давления будем использовать манометр, представляющий собой маленькую жесткую цилиндрическую коробку, одно из оснований которой способно деформироваться (рис. 198).

рис. 198


 Это основание назовем мембраной. Прогиб мембраны служит мерой давления жидкости на мембрану. Можно присоединить к коробке измерительную трубку. Заполнив коробку и частично трубку некоторой жидкостью, получим измеритель давления − манометр, в котором высота уровня жидкости в трубке пропорциональна силе давления на мембрану. Если площадь мембраны мала, то описанный прибор позволяет измерять давление «в точке». При погружении такого манометра в неподвижную жидкость показания будут одинаковы при любой ориентации мембраны.
 Иное дело − показания манометра при его погружении в движущуюся жидкость. Понятно, что высота поднятия жидкости в трубке будет максимальна, если плоскость мембраны перпендикулярна скорости движения жидкости (рис. 199).

рис. 199


 В этом случае сила, действующая на мембрану со стороны жидкости, будет зависеть не только от степени сжатия жидкости, но и от ее скорости. Та часть силы давления, которая зависит от скорости потока, называется динамическим напором. Его появление связано с тем, что наш измерительный прибор будет возмущать поток жидкости, заставляя часть жидкости изменять направление скорости, что неизбежно приводит к появлению дополнительной силы давления. Если же расположить мембрану так, чтобы вектор скорости жидкости был направлен параллельно (по касательной, тангенциально) измерительной мембране, то возмущение движения жидкости может быть пренебрежимо малым, поэтому при таком положении манометра его показания будут соответствовать давлению, обусловленному исключительно сжатием (или растяжением) жидкости. Измеренное таким способом давление мы и будем подразумевать в дальнейшем изложении.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: