Примеры решения задач. Задача 1. Два точечных заряда 9Q и -Q закреплены на расстоянии l = 50 см друг от друга

Задача 1. Два точечных заряда 9 Q и -Q закреплены на расстоянии l = 50 см друг от друга. Третий заряд Q 1может перемещаться только вдоль прямой, проходящей через заряды. Определить положение заряда Q 1, при котором он будет находиться в равновесии. При каком знаке заряда Q 1равновесие будет устойчивым?

Решение. Заряд Q 1находится в равновесии в том случае, если геометрическая сумма сил, действующих на него, равна нулю. Это значит, что на заряд Q 1дол­жны действовать две силы, равные по модулю и проти­воположные по направлению. Рассмотрим, на каком из трех участков I, II, III (Рис. 4) может быть выполнено это условие. Для определенности будем считать, что заряд Q 1— положительный.

Рис. 5.

На участке I (рис. 5, а) на заряд Q 1будут дей­ствовать две противоположно направленные силы: и . Сила , действующая со стороны заряда 9 Q, в любой точке этого участка больше силы , действующей со стороны заряда

-Q, так как больший заряд 9Q находится всегда ближе к заряду Q 1, чем меньший (по модулю) заряд -Q. Поэтому равновесие на этом участке невозможно.

На участке II (рис. 4, б) обе силы и направ­лены в одну сторону — к заряду -Q. Следовательно, и на втором участке равновесие невозможно.

На участке III (рис. 4, в) силы и направлены в противоположные стороны, так же как и на участке I, но в отличие от него меньший заряд -Q всегда нахо­дится ближе к заряду Q 1,чем больший заряд 9 Q. Это значит, что можно найти такую точку на прямой, где силы и будут одинаковы по модулю, т. е.

= (1)

Пусть х и l+х — расстояние от меньшего и боль­шего зарядов до заряда Q 1.Выражая в равенстве (1) и в соответствии с законом Кулона, получим

9 Q Q 1(l + x) 2 = Q Q 1 /x 2, или l + x = ± З х, откуда

x 1 = + l/ 2,

x 2 = - l/ 4.

Корень x 2не удовлетворяет физическому условию задачи (в этой точке силы и хотя и равны по модулю, но сонаправлены).

Определим знак заряда Q 1, при котором равновесие будет устойчивым. Равновесие называется устойчивым, если при смещении заряда от положения равновесия возникают силы, возвращающие его в положение равно­весия. Рассмотрим смещение заряда Q 1 в двух случаях: когда заряд положителен и когда отрицателен.

Если заряд Q 1положителен, то при смещении его влево обе силы и возрастают. Так как сила воз­растает медленнее, то результирующая сила, действую­щая на заряд Q 1, будет направлена в ту же сторону, в которую смещен этот заряд, т. е. влево. Под действием этой силы заряд Q 1 будет удаляться от положения равно­весия. То же происходит и при смещении заряда Q 1вправо. Сила убывает быстрее, чем . Геометриче­ская сумма сил в этом случае направлена вправо. Заряд под действием этой силы также будет перемещаться вправо, т. е. удаляться от положения равновесия. Таким образом, в случае положительного заряда равновесие является неустойчивым.

Если заряд Q 1отрицателен, то его смещение влево вызовет увеличение сил и , но сила возрастает медленнее, чем , т. е. | |>| |. Результирующая сила будет направлена вправо. Под ее действием заряд Q 1 возвращается к положению равновесия. При смещении Q 1 вправо сила убывает быстрее, чем , т. е. | |>| |. результирующая сила направлена влево и заряд Q 1 опять будет возвращаться к положению равновесия. При отрицательном заряде равновесие является устойчивым. Величина самого заряда Q 1несущественна.

Рис. 6.

Задача 2. Три точечных заряда Q 1 = Q 2 = Q 3 = 1 нКл расположены в вершинах равностороннего треугольника. Какой заряд Q 4 нужно поместить в центре треугольника, чтобы указанная система зарядов находилась в равно­весии?

Решение. Все три заряда, расположенные по вершинам треугольника, находятся в одинаковых условиях. Поэтому достаточно выяснить, какой заряд следует по­местить в центре треугольника, чтобы какой-нибудь один из трех зарядов, например Q 1,находился и равновесии. Заряд Q 1 будет находиться в равновесии, если век­торная сумма действующих на него сил равна нулевому вектору (Рис. 6):

(1)
где , , — силы, с которыми соответственно дей­ствуют на заряд Q 1 заряды Q 2, Q 3, Q 4; равнодей­ствующая сил и

Так как силы и направлены по одной прямой в противоположные стороны, то векторное равенство (1) можно заменить скалярным: F - F 4 = 0, откуда F 4 = F. Выразив в последнем равенстве F через F 2, F 3 и учиты­вая, что F 3 = F 2, получим

F 4 = F 2 .

Применив закон Кулона и имея в виду, что Q 2 = Q 3 = Q 1, найдем

откуда Q 4= (2)

Из геометрических построений в равностороннем тре­угольнике следует, что

, cos α=cos 60°=l/2.

С учетом этого формула (2) примет вид

Q 4 = Q 1 .

Произведем вычисления:

Q 4 = 10-9 / Кл = 5,77·10-10 Кл = 577 пКл.

Задача 3. На тонком стержне длиной l = 20 см нахо­дится равномерно распределенный электрический заряд. На продолжении оси стержня на расстоянии а = 10 см от ближайшего конца находится точечный заряд Q 1 = 40 нКл, который взаимодействует со стержнем с си­лой F = 6 мкН. Определить линейную плотность τ заряда на стержне.

Решение. Сила взаимодействия F заряженного стержня с точечным зарядом Q 1зависит от линейной плотности τ заряда на стержне. Зная эту зависимость, можно определить τ.

Рис. 7

При вычислении силы F следует иметь в виду, что заряд на стержне не является точеч­ным, поэтому закон Кулона непосредственно применить нельзя. В этом случае можно поступить следующим образом. Выделим из стержня (Рис. 7) малый участок dr с зарядом dQ = τdr. Этот заряд можно рассматривать как точечный. Тогда, согласно закону Кулона,

d F =

Интегрируя это выражение в пределах от a до a + l, получаем

F =

откуда

Проверим, дает ли рас­четная формула единицу линейной плотности электрического заряда. Для этого в правую часть формулы вместо символов величин подста­вим их единицы:

Найденная единица является единицей линейной плот­ности заряда.

Произведем вычисления:

Задача 4. Два точечных электрических заряда Q 1 = 1 нКл и Q 2= - 2 нКл находятся в воздухе на рас­стоянии d = 10 см друг от друга. Определить напря­женность и потенциал φ поля, создаваемого этими зарядами в точке А, удаленной от заряда Q 1на расстоя­ние r 1= 9 см и от заряда Q 2 на r 2 = 7 см.

Решение. Согласно принципу суперпозиции элек­трических полей, поле, созданное зарядом, не зависит от присутствия других зарядов. Поэтому напряженность электрического поля в искомой точке может быть найдена как геометрическая сумма напряженностей и полей, создаваемых каждым зарядом в отдельности: . Напряженности электриче­ского поля, создаваемого в воздухе (ε = 1) зарядами Q 1 и Q 2, складываются.

Вектор (Рис. 8.) направлен по силовой линии от заряда Q 1, так как этот заряд положителен; вектор направлен также по силовой линии, но к заряду Q 2 так как этот заряд отрицателен.

Рис. 8.

Модули векторов и находим по формулам

, (1)

. (2)

Модуль результирующего вектора найдем по теореме косинусов:

Е = (3)

где α - угол между векторами и , который может быть найден из треугольника со сторонами r 1, r 2и d: cos α = . В данном случае во избежание громоздких записей удобно значение cos α вычислить отдельно:

cos α =

Подставляя выражение Е 1 из (1) и Е 2 из (2) в (3) и вынося общий множитель 1/(4 ) за знак корня, получаем

Е = (4)

В соответствии с принципом суперпозиции электриче­ских полей потенциал φ результирующего поля, созда­ваемого двумя зарядами Q 1 и Q 2, равен алгебраической сумме потенциалов;

(5)

Потенциал электрического поля, создаваемого в ва­кууме точечным зарядом Q на расстоянии r от него, выра­жается формулой

. (6)

В нашем случае согласно формулам (5) и (6) получим

+ ,

Произведем вычисления:

=3,58·103 В/м = 3,58 кВ/м;

=-157 В.

Рис. 9

Задача 5. По тон­кому кольцу равно­мерно распределен за­ряд Q = 40 нКл с ли­нейной плотностью τ = 50 нКл/м. Опреде­лить напряженность электрического поля, создаваемого этим за­рядом в точке А, лежа­щей на оси кольца и удаленной от его цен­тра на расстояние, рав­ное половине радиуса.

Решение. Сов­местим координатную плоскость хoу с плоскостью кольца, а ось oz - с осью кольца (Рис. 9). На кольце выделим малый участок длиной dl. Так как заряд dQ = τ dl, находящийся на этом участке, можно считать точечным, то напряженность d электрического поля, создаваемого этим зарядом, может быть записана в виде

,

где r — радиус-вектор, направленный от элемента dl к точке А.

Разложим вектор d на две составляющие: d 1, пер­пендикулярно плоскости кольца (сонаправленную с осью Oz), и d 2, параллельную плоскости кольца (плос­кости хoу), т. е.

Напряженность Е электрического поля в точке А найдем интегрированием

,

где интегрирование ведется по всем элементам заряженно­го кольца. Заметим, что для каждой пары зарядов (dQ = dQ'), расположенных симметрично относительно центра кольца, векторы и в точке А равны по модулю и противоположны по направлению: .Поэтому векторная сумма (интеграл) .

Составляющие для всех элементов кольца сонаправлены с осью oz (единичным вектором , определяющим направление оси Z), т.е. . Тогда

.

Так как dE = , r = = = и cos α = (R/2)/ r = l/ , то

dE 1 = = .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: