Задачи к контрольной работе № 3

3.01. В опыте Юнга отверстия освещаются монохроматическим светом с длиной волны λ = 700 нм. Расстояние между отверстиями d = 1 мм, расстояние от отверстий до экрана L = 4 м. На каком расстоянии от центра экрана будет находиться первый максимум освещенности.

3.02. В опыте Юнга отверстия освещались монохроматическим светом (λ = 600нм). Расстояние между отверстиями d = 1 мм, расстояние от отверстий до экрана L = 3 м. Найти положение первых трех светлых полос.

3.03. В опыте с зеркалами Френеля расстояние между мнимыми изображениями d = 0,05 мм. Расстояние до экрана L = 5 м. В зеленом свете получились интерференционные полосы, расположенные на расстоянии

l = 5 мм друг от друга. Найти длину волны λ зеленого цвета.

3.04. Два параллельных световых пучка, отстоящих друг от друга на расстоянии d = 5 см, падают на кварцевую призму (n = 1, 49) с преломляющим углом a = 25°. Определите оптическую разность хода Δ этих пучков на выходе из призмы.

3.05. Расстояние между двумя щелями в опыте Юнга d = 0,5 мм (λ = 0,6 мкм). Определите расстояние l от щелей до экрана, если ширина Δ х интерференционных полос равна 1,2 мм.

3.06. В опыте Юнга два когерентных источника S1 и S2 , излучающие свет с длиной волны λ = 0,6 мкм, находятся на расстоянии 2 мм друг от друга. Экран располагается на расстоянии 4 м от источников. Что будет наблюдаться в точке экрана расположенной на одной горизонтали с источником света S1: свет или темнота?

3.07. В опыте Юнга расстояние l от щелей до экрана равно 3 м. Определите угловое расстояние между соседними светлыми полосами, если третья световая полоса на экране отстоит от центра интерференционной картины на 4,5 мм.

3.08. Если в опыте Юнга на пути одного из интерферирующих лучей поставить перпендикулярно этому лучу тонкую стеклянную пластинку

(n = 1,5), то центральная светлая полоса смещается в положение, первоначально занимаемой пятой светлой полосой. Длина волны λ = 0,5 мкм. Определите толщину пластинки.

3.09. Установка для получения колец Ньютона освещается светом от ртутной дуги, падающим по нормали к поверхности пластинки. Наблюдение ведется в проходящем свете. Какое по порядку светлое кольцо, соответствующее линии λ 1 = 579,1 нм, совпадает со следующим кольцом, соответствующим линии λ 2 = 577 нм?

3.10. При освещении дифракционной решетки светом с длиной волны λ1 = 590 нм спектр третьего порядка виден под углом 10011/. Для какой длины волны λ2 спектр второго порядка, получаемый этой же решеткой, будет наблюдаться под углом 6016/?

3.11. Свет от монохроматического источника (λ = 600 нм) падает нормально на дифракционную решетку. Каков период этой решетки, если на экране расстояние между спектрами второго порядка l = 20 см? Решетка отстоит от экрана на расстояние L = 1м.

3.12. Точечный источник света (λ = 0,5 мкм) расположен на расстоянии a = 1 м перед диафрагмой с круглым отверстием диаметра d = 2 мм. Определите расстояние b от диафрагмы до точки наблюдения, если отверстие открывает три зоны Френеля.

3.13. На узкую щель шириной a= 0,05 мм падает нормально монохроматический свет с длиной волны λ = 694 нм. Под каким углом будет наблюдаться вторая темная дифракционная полоса?

3.14. На щель шириной a = 6 λ падает нормально параллельный пучок монохроматического света с длиной волны λ. Под каким углом φ будет наблюдаться третий дифракционный минимум света?

3.15. На узкую щель падает нормально монохроматический свет. Его направление на четвертую темную дифракционную полосу составляет 2º 12΄. Определите, сколько длин волн укладывается на ширине щели.

3.16. Какое число штрихов N0 на единицу длины имеет дифракционная решетка, если зеленая линия ртути (λ = 546,1 нм) в спектре первого порядка наблюдается под углом φ = 19º 8΄?

3.17. На дифракционную решетку нормально падает монохроматический свет с длиной волны λ = 600 нм. Определите наибольший порядок спектра, полученный с помощью этой решетки, если ее постоянная d = 2 мкм.

3.18. Найти наибольший порядок k спектра для желтой линии натрия (λ = 589 нм), если постоянная дифракционной решетки d = 2 мкм.

3.19. Свет длиной волны λ = 589 нм нормально падает на дифракционную решетку с периодом d, общее количество штрихов которой составляет N = 10000 штрихов. Оценить угловую ширину максимума порядка m.

3.20. На дифракционную решетку, имеющую 100 штрихов на 1 мм, по нормали к ней падает бе­лый свет. Найдите длину спектра первого по­рядка на экране, если расстояние от линзы до экрана 2 м. Видимым считать свет в диапазоне 400 - 760 нм.

3.21. В частично поляризованном свете амплитуда светового вектора, соответствующая максимальной интенсивности света, в n = 2 раза больше амплитуды, соответствующий минимальной интенсивности. Определить степень поляризации Р света.

3.22. Степень поляризации Р частично поляризованного света равна 0,5. Во сколько раз отличается максимальная интенсивность света, пропускаемого через анализатор, от минимальной.

3.23. Найти показатель преломления n стекла, если при отражении от него света отраженный луч будет полностью поляризован при угле β = 30°.

3.24. На николь падает пучок частично-поляризованного света. При некотором положении николя интенсивность света, прошедшего через него, стала минимальной. Когда плоскость пропускания николя повернули на угол β = 45°, интенсивность света возросла в k = 1,5 раза. Определить степень поляризации Р света.

3.25. Найти угол φ между главными плоскостями поляризатора и анализатора, если интенсивность естественного света проходящего через поляризатор и анализатор, уменьшается в 4 раза

3.26. Никотин (чистая жидкость), содержащийся в стеклянной трубке длиной l = 8 см, поворачивает плоскость поляризации желтого света натрия на угол φ = 137°. Плотность никотина ρ = 1,01∙103 кг/м3. Определить удельное вращение [ α ] никотина.

3.27. Степень поляризации частично поляризованного света составляет 0,75. Определите отношение максимальной интенсивности света, пропускаемого анализатором, к минимальной.

3.28. Угол поворота φ плоскости поляризации желтого света натрия при прохождении через трубку с раствором сахара равен 40°. Длина трубки l = 15 см. Удельное вращение [ α ] сахара равно 1,17∙10-2 рад∙м3/(м∙кг)

3.29. Угол между главными плоскостями поляризатора и анализатора составляет 30°. Определите изменение интенсивности прошедшего через них света, если угол между главными плоскостями равен 45°.

3.30. Определите степень поляризации Р света, который представляет собой смесь естественного света с плоскополяризованным, если интенсиность поляризованного света равна интенсивности естественного.

3.31. Найти температуру T печи, если известно, что излучение из отверстия в ней площадью S = 6,1 см2 имеет мощность N = 34,6 Вт. Излучение считать близким к излучению абсолютно черного тела.

3.32. Какую мощность N излучения имеет Солнце? Излучение Солнца считать близким к излучению абсолютно черного тела. Температура поверхности Солнца T = 5800 К.

3.33. Определите, как и во сколько раз изменится мощность излучения черного тела, если длина волны, соответствующая максимуму его спектральной плотности энергетической светимости, сместилась с λ 1 = 720 нм до λ 2 = 400 нм.

3.34. Определить температуру Т, при которой излучательность R е абсолютно черного тела равна 10 кВт/м2.

3.35. Какую энергетическую светимость R 0 имеет абсолютно черное тело, если максимум спектральной плотности его энергетической светимости приходится на длину волны λ = 484 нм?

3.36. В каких областях спектра лежат длины волн, соответствующие максимуму спектральной плотности энергетической светимости, если источником света служит: а) спираль электрической лампочки (T = 3000 К); б) поверхность Солнца (T = 6000 К). Излучение считать близким к излучению абсолютно черного тела.

3.37. Муфельная печь потребляет мощность P = 1,4 кВт. Температура Т ее внутренней поверхности при открытом отверстии площадью S = 20 см2 равна 1,5 кК. Какая часть ε мощности рассеивается стенками, если считать, что отверстие печи излучает как абсолютно черное тело?

3.38. Определите, во сколько раз необходимо уменьшить термодинамическую температуру черного тела, чтобы его энергетическая светимость R e ослабилась в 16 раз.

3.39. Зачерненный шарик остывает от температуры T 1 = 300 К до T 2 = 293 К. На сколько изменилась длина волны λ, соответствующая спектральной плотности его энергетической светимости?

3.40. Принимая коэффициент черноты a T угля при температуре Т = 600 К равным 0,6, определить излучательность R е угля и энергию W, излучаемую с поверхности угля площадью S = 10 см2 за время t = 5 мин.

3.41. Найти частоту ν света, вырывающего из металла электроны, которые полностью задерживаются разностью потенциалов U = 3 Β. Красная граница фотоэффекта ν 0 = 6·1014 Гц. Найти работу выхода A электрона из металла.

3.42. При фотоэффекте с платиновой поверхности электроны полностью задерживаются разностью потенциалов U = 0,8 Β. Найти длину волны λ применяемого облучения и предельную длину волны λ0, при которой ещё возможен фотоэффект.

3.43. Максимальная скорость υ max фотоэлектронов, вылетающих из металла при облучении его γ - фотонами, равна 290 Мм/с. Определить энергию e γ - фотонов.

3.44. Задерживающее напряжение для платиновой пластинки (работа выхода A = 6,3 эВ) составляет 3,7 В. При тех же условиях для другой пластинки задерживающее напряжение равно 5,3 В. Определите работу выхода электронов из этой пластинки.

3.45. Красная граница фотоэффекта для бария λ = 5,5•10-7 м. С какой скоростью будут вылетать фотоэлектроны из бариевой пластинки при ее об­лучении светом с длиной волны λ = 4,4•10-7 м? Постоянная Планка h = 6,63•10-34 Дж•с, масса электрона m е = 9,1•10-31 кг.

3.46. Определите максимальную скорость ν max фотоэлектронов, вырываемых с поверхности цинка (работа выхода А = 4 эВ), при облучении γ - излучением с длиной волны λ = 2,47 пм.

3.47. Какая доля энергии фотона израсходована на работу вырывания фотоэлектрона, если красная граница фотоэффекта λ о = 307 нм и максимальная кинетическая энергия Т max фотоэлектрона равна 1 эВ.

3.48. Найти задерживающую разность потенциалов U для электронов, вырываемых при освещении калия светом с длиной волны λ = 330 нм.

3.49. Длина волны света, соответствующей красной границе фотоэффекта, для некоторого металла λ 0 = 275 нм. Найти минимальную энергию фотона, вызывающего фотоэффект.

3.50. На цинковую пластинку падает монохроматический свет с длиной волны λ = 220 нм. Определить максимальную скорость υ max фотоэлектронов.

3.51. Фотон с энергией ε = 1,025 МэВ рассеялся на первоначально покоившемся свободном электроне. Определить угол рассеяния фотона, если длина волны рассеянного фотона оказалась равной комптоновской длине волны λ с =2,43 пм.

3.52. Определить максимальное изменение длины волны при комптоновском рассеянии на свободных электронах.

3.53. Рентгеновские лучи с длиной волны λ 0 = 70,8 пм испы­тывают комптоновское рассеяние на парафине. Найти длину волны λ рентгеновских лучей, рассеянных в направлениях: а) φ = π / 2; б) φ = π

3.54. Узкий пучок монохроматического рентгеновского излучения падает на рассеивающее вещество. Оказывается, что длины волн рассеянного под углами θ 1 = 60о и θ 2 = 120о излучения отличаются в 1,5 раза. Определить длину волны падающего излучения, предполагая, что рассеяние происходит на свободных электронах.

3.55. Фотон длиной волны λ = 5 пм испытал комптоновское рассеяние под углом θ = 90о на первоначально покоившемся свободном электроне. Определить: 1) изменение длины волны при рассеянии; 2) энергию электрона отдачи; 3) импульс электрона отдачи.

3.56. Какая доля энергии фотона при эффекте Комптона приходится на электрон отдачи, если фотон претерпел рассеяние на угол θ = 180°? Энергия фотона ε до рассеяния равна 0,255 МэВ.

3.57. Какова была длина волны λ 0 рентгеновского излучения, если при комптоновском излучении этого излучения графитом под углом φ = 60о длина волны рассеянного излучения оказалась равной λ = 2,4 пм?

3.58. Фотон с энергией 0,3 МэВ рассеялся под углом θ = 180о на свободном электроне. Определить долю энергии фотона, приходящуюся на рассеянный фотон.

3.59. Фотон (λ = 1 пм) рассеялся на свободном электроне под углом θ = 90°. Какую долю своей энергии фотон передал электрону?

3.60. Рентгеновские лучи с длиной волны λ 0 = 20 пм испытывают комптоновское рассеяние под углом φ = 90о. Найти ∆ λ длины волны рентгеновских лучей при рассеянии, а также энергию W е и импульс p e электрона отдачи.

3.61. Определить максимальную и минимальную энергии фотона в видимой серии спектра водорода (серии Бальмера).

3.62. На сколько изменилась кинетическая энергия в атоме водорода при излучении атомом фотона с длиной волны λ = 486 нм?

3.63. Используя теорию Бора для атома водорода, определить: 1) радиус ближайшей к ядру орбиты (первый Боровский радиус); 2) скорость движения электрона по этой орбите.

3.64. Определите 1) частоту n вращения электрона, находящегося на первой Боровский орбите; 2) эквивалентный ток.

3.65. Определите частоту света, излучаемого атомом водорода при переходе электрона на уровень с главным квантовым числом n = 2, если радиус орбиты электрона изменился в k = 9 раз.

3.65. Определите потенциальную и кинетическую энергии электрона, находящегося на первой орбите атома водорода.

3.66. Найти потенциал ионизации U 1 атома водорода.

3.67. Вычислить энергию фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на первый.

3.68. Используя теорию Бора, определить орбитальный магнитный момент электрона, движущегося по третьей орбите атома водорода.

3.69. Определить длину волны, соответствующую третьей спектральной линии в серии Бальмера.

3.70. В каких пределах должны лежать длины волны λ монохроматического света, чтобы при возбуждении атомов водорода квантами этого света радиус орбиты r k электрона увеличивается в 9 раз?

3.71. Электрон находится в одномерной прямоугольной потенциальной яме шириной l с бесконечно высокими стенками. Определите вероятность обнаружения W электрона в средней трети ямы, если электрон находится в возбужденном состоянии (n = 3). Поясните физический смысл полученного результата, изобразив графически плотность вероятности обнаружения электрона в данном состоянии.

3.72.. Электрон находится в одномерной прямоугольной потенциальной яме шириной l с бесконечно высокими стенками. Определите вероятность обнаружения W электрона в крайней трети ямы, если электрон находится в возбужденном состоянии (n = 2).

3.73. Частица находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками. Определите, во сколько раз изменится отношение разности соседних энергетических уровней Δ E n+1,nE n частицы при переходе от n = 3 к n' = 8.

3.74. Частица с энергией E движется в положительном направлении оси х и встречает на своем пути прямоугольный потенциальный барьер высотой U и конечной шириной l, причем E < U. Запишите уравнение Шредингера для областей 1, 2, 3.

3.75. Электрон с энергией E = 5 эВ движется в положительном направлении оси х, встречая на своем пути прямоугольный потенциальный барьер высотой U = 10 эВ и шириной l = 0,1 нм. Определите коэффициент D прозрачности потенциального барьера.

3.76. Частица с энергией E = 10 эВ движется в положительном направлении оси х, встречая на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U = 5 эВ. Определите коэффициент преломления n волн де Бройля на границе потенциального барьера.

3.77. Частица с энергией E = 50 эВ, двигаясь в положительном направлении оси х, встречает на своем пути бесконечно широкий потенциальный барьер высотой U = 20 эВ. Определите вероятность отражения частицы от барьера.

3.78. Частица массой m = 10-19 кг, двигаясь в положительном направлении оси х со скоростью υ = 20 м/с, встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U = 100 эВ. Определите коэффициент отражения R волн де Бройля на границе барьера.

3.79. Частица с энергией E движется в положительном направлении оси х и встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U, причем E < U. Запишите уравнение Шредингера для областей 1 и 2.

3.80. Протон с энергией Е = 5 эВ движется в положительном направлении оси х, встречая на своем пути прямоугольный потенциальный барьер высотой U = 10 эВ и шириной l = 0,1 нм. Определите вероятность W p прохождения протоном этого барьера. Во сколько раз надо сузить барьер, чтобы вероятность прохождения его протоном была такой же, как для электрона в вышеприведенных условиях?



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: