Примеры задач с решениями

2.1 Написать уравнение плоскости, проходящей через точку М1 (2; 4; -3) и отсекающей на осях Ох, Оу и Оz отрезки, длины которых находятся в соотношении 2:3:5 соответственно.

Решение:

Пусть - искомая плоскость, и пусть от оси Ох отсекает отрезок, равный 2а. Тогда от оси Оу будет отсекать отрезок 3а, а от оси Oz – отрезок, равный 5а. Составим уравнение плоскости с помощью формулы (8):

.

Найдём значение а, подставив координаты точки М в полученное уравнение:

.

Тогда уравнение запишем в виде:

-искомое уравнение.

Ответ: .

2.2 Уравнение прямой записать в каноническом виде.

Построить прямую.

Решение:

(Из второго уравнения исключаем х). Получили зависимость у = у (z). Теперь найдём зависимость у = у(х), исключая z:

Получили: - каноническое уравнение прямой (формула (16)). Прямая проходит через точку с координатами (-2; 0; 5), параллельно вектору (1; 1; -1). Прямая изображена на рисунке 5.

Ответ: . Рисунок 10.

3.3 Найти угол прямой с плоскостью 2х + у + z - 4 = 0.

Решение:

Найдём каноническое уравнение прямой:

Получили, что прямая, заданная в условии системой двух уравнений, параллельна вектору (2; 6; -3). Пусть уравнение 2х + у + z - 4 = 0 задаёт плоскость . Тогда угол между прямой и плоскостью будет равен углу , где - угол между прямой и нормалью к плоскости (рисунок 6).

Рисунок 11.

Из 1.2.2 следует, что = (2; 1; 1) - вектор нормали к плоскости .

С помощью формулы (4) найдём угол между векторами и (он и будет равен углу ):

Тогда .

Ответ:

2.4 Найти центр и радиус сферы 1). x2 + y2 +z2 -3x +5y – 4z = 0

2). x2 + y2 +z2 = 2 az. Построить изображение сфер.

Решение:

1). x2 + y2 +z2 -3x +5y – 4z = 0

Получили уравнение сферы с центром в точке S и радиусом

R = - рисунок 7.

Рисунок 12.

2). x2 + y2 +z2 = 2 az - уравнение сферы с центром в точке (0; 0; а) и радиусом R = a – рисунок 13.

Рисунок 8.

Рисунок 13.

Ответ: 1). Сфера имеет центр в точке S и радиус R = ; 2). Сфера имеет центр в точке (0; 0; а) и радиус R = a.

2.6 Написать уравнение поверхности, образованной вращением эллипса вокруг оси Oz.

Решение:

В плоскости у = 0 сечением поверхности является эллипс с полуосями: а и с. Вращая его вокруг оси Oz, получаем поверхность, сечение которой плоскостью x = 0 – так же эллипс. Т.к. при вращении точка с координатами (а; 0; 0) переходит в точку с координатами (0; а; 0), а точка с координатами (0; 0; с) остаётся на месте, то уравнение эллипса в сечении плоскостью х = 0 имеет вид:

. Т.о. искомая поверхность – эллипсоид вращения с полуосями а, а и с. Следовательно, искомое уравнение можно записать в виде: .

Рисунок 14.

Ответ: - уравнение эллипсоида вращения.

2.5 Какому условию должны удовлетворять координаты точки M, если она одинаково удалена от точек А(7; -3) и В(-2; 1)?

Решение:

Пусть точка М имеет координаты (x; y). Найдём координаты векторов :

. Из условия имеем: АМ = ВМ, а следовательно, . Запишем квадраты длин отрезков АМ и ВМ, используя свойства скалярного произведения:

Т.к. квадраты длин равны, получим уравнение:

.

Получили, что точка М, удовлетворяющая условию задачи, лежит на прямой .

II способ:

Т.к. точка М равноудалена от А и В, то она находится на серединном перпендикуляре прямой (АВ). Найдём середину отрезка АВ:

Пусть N(х0; у0) середина отрезка АВ, тогда

.

Будем искать уравнение прямой (MN). Т.к. (MN) (АВ), угловой коэффициент (MN) найдём из уравнения прямой (АВ). По формуле уравнения прямой, проходящей через две известные точки, для точек А и В получим:

Из последнего уравнения следует, что угловой коэффициент прямой (АВ) равен , тогда прямая (MN) имеет угловой коэффициент равный . Тогда уравнение (MN) можно записать в виде: . Свободный член получим, подставив в уравнение (MN) координаты точки N :

Последнее уравнение – уравнение прямой (MN) – выражает условие, при котором точка M будет равноудалена от точек А и В.

Ответ: .

2.6 Даны точки М1 (-1, -2, 0) и М2 (1, 1, 2). Написать уравнение плоскости, проходящей через М1 и М2 и перпендикулярной к плоскости х + 2у + 2z – 4 = 0.

Решение:

Пусть - искомая плоскость, задаваемая уравнением Ах + Ву + Сz + D = 0. Вектор (А,В,С) - вектор нормали к плоскости : = (А,В,С).

Пусть уравнение х + 2у + 2z – 4 = 0 задаёт плоскость 1, вектор нормали которой 1 будет иметь координаты (1; 2; 2). Т.к. плоскости перпендикулярны, 1= 0. Тогда по свойству скалярного произведения векторов получим уравнение: А + 2В + 2С = 0. Ещё два уравнения получим, подставив координаты точек М1 и М2 в уравнение плоскости :

-А – 2В + С + D = 0 и А + В + 2С + D = 0.

Составим систему линейных уравнений:

. Система содержит три уравнения и четыре неизвестных, следовательно, одну переменную можно считать свободной, например D, и выражать через неё остальные. Составим расширенную матрицу системы и с помощью метода Гаусса (1.3) получим её решение:

Из последнего уравнения следует: , из второго уравнения получим, что В = D. Из первого выражаем А:

Тогда искомое уравнение плоскости можно записать в виде:

Ответ: .

2.7 Эллипс, симметричный относительно осей координат, фокусы которого находятся на оси Ох, проходит через точку М (-4; ) и имеет эксцентриситет е = ¾. Написать уравнение эллипса и найти фокальные радиус – векторы точки М. Написать уравнения директрис.

Решение:

Будем искать уравнение эллипса в виде: .

a и b найдём, подставив в уравнение эллипса координаты точки М: .

Т.к. , получим второе уравнение: .

Решим систему двух уравнений с двумя неизвестными:

Тогда искомым уравнением эллипса будет уравнение: , при этом а = 8, b= .

По формулам для радиус-векторов точки М получим:

Уравнения директрис при а = 8 можно записать в виде:

Ответ: , , , уравнения директрис: .

2.8 Написать уравнение гиперболы, симметричной относительно осей координат, проходящей через точку (2р, р ), у которой е = . Найти уравнения асимптот и директрис.

Решение:

Будем искать уравнение гиперболы в виде: .

Параметры a и b найдём, подставив в уравнение гиперболы координаты точки (2р, р ): .

Т.к. , получим второе уравнение: .

Решим систему двух уравнений с двумя неизвестными:

Тогда искомым уравнением гиперболы будет уравнение: , при этом, а=b=p.

Асимптоты гиперболы можно записать в виде: . Т.о. асимптотами гиперболы являются биссектрисы координатных углов. Директрисами гиперболы являются прямые х = .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: