Теорема 1. Если система векторов содержит нулевой вектор, то она линейно зависима.
Док-во. Пусть, например,
. Тогда равенство
справедливо при с1=1, с2=с3=…=сп= 0, т.е. при ненулевом коэффициенте с1. Значит, система линейно зависима.
Теорема 2. Если некоторая подсистема системы векторов линейно зависима, то и вся система линейно зависима.
Док-во. Пусть, например, векторы
линейно зависимы. Тогда в равенстве
не все коэффициенты равны нулю. Но тогда при тех же коэффициентах и с1 =0 будет справедливо и равенство
. Система линейно зависима.
Следствие. Если система векторов линейно независима, то и любая ее подсистема также линейно независима.
Доказывается «от противного».
Теорема 3 (теорема Штейница). Если каждый из векторов
является линейной комбинацией векторов
и m>n, то система векторов
линейно зависима.
Следствие. В любой системе п -мерных векторов не может быть более чем п линейно независимых.
Док-во. Каждый п -мерный вектор выражается в виде линейной комбинации п единичных векторов. Поэтому, если система содержит т векторов и т > п, то по теореме Штейница эта система линейно зависима.
Линейное пространство называется п -мерным, если в нем существуют п линейно независимых векторов, а любые п+1 векторов являются линейно зависимыми.