double arrow

Общие понятия. Граф G задается множеством точек (вершин) X={x1,..xn} и множест­вом линий (ребер) A={a1,..,a m}, соединяющих между собой все или часть этих точек


Граф G задается множеством точек (вершин) X={x1,..xn} и множест­вом линий (ребер) A={a1,..,a m}, соединяющих между собой все или часть этих точек. Таким образом, граф G полностью задается парой (X,A).

Другое, чаще употребляемое описание графа, состоит в задании множества вершин X и соответствия G, которое показывает, как между собой связаны вершины. То есть граф задается следующим образом.

Пусть дано множество X, состоящее из элементов (назовем их вер­шинами графа) и закон G, позволяющий установить соответствие между каждым элементом x множества X и некоторыми его подмножествами G(x) тогда граф полностью определяется множеством X и соответствием G, то есть граф обозначается парой (X,G). Удобно использовать обозначе­ние G(x) по аналогии с функцией.

Пример (рис.2.1). Множество вершин X = {x0, x1, x2, x3, x4, x5} и соответствия между вершинами

G(x0) = {x1, x2},

G(x2) = {x0, x1, x5},

G(x3) = {x4},

G(x4) = {x1, x3},

G(x5) = {x2},

G(x6) = Æ.

Ребра графа – линии, соединяющие вершины, указывают на соот­ветствие между вершинами в графе.

Запись g(xi, xj) говорит, что ребро g инцидентновершинам xi, xj и вершины xi, xj инцидентны ребру g. Две вершины xi, xj называются смеж­ными, если они определяют ребро графа. Два ребра графа называются смежными,если их концы имеют общую вершину.

Вершина, не инцидентная никакому ребру графа, называется изоли­рованной. Если граф состоит из изолированных вершин, его называют ноль-графом.


Сейчас читают про: