Законы излучения абсолютно черного тела

Зависимость полной испускательной способности R абсолютно черного тела от температуры была получена в 1879 г. австрийским физиком И. Стефаном и обоснована теоретически в 1884 г. Л. Больцманом.

Полная испускательная способность R абсолютно черного тела пропорциональна четвертой степени абсолютной температуры (закон Стефана-Больцмана): , где σ = 5,67·10-8 Вт·м-2·К-4 – постоянная Стефана-Больцмана.

Спектральная плотность энергетической светимости абсолютно черного тела имеет максимум, который смещается в зависимости от абсолютной температуры этого тела. На Рис. 4.2.1 показано распределение энергии и смещение максимума при различных температурах в спектре излучения угля близком к абсолютно черному телу.

Рис. 1. Спектральная плотность излучения угля

Характер этого смещения выражается законом Вина – длина волны, соответствующая максимуму излучения абсолютно черного тела, обратно пропорциональна его абсолютной температуре: , где
b = 2,9·10-3 м·К – постоянная Вина.

Из рис. 1 следует, что с повышением температуры испускательная способность возрастает (увеличивается площадь под кривой), а длина волны, соответствующая максимуму излучения, уменьшается.

Наглядным примером, подтверждающим изменение длины волны максимума излучения, является изменение цвета свечения нагреваемого металла. Сначала металл остается темным (максимум лежит в ИК области спектра), затем при достаточно высокой температуре появляется красное свечение металла ("красное каление"), потом оранжевое, желтое и, наконец, голубовато-белое свечение ("белое каление"). Конечно, металл не является абсолютно черным телом, но некоторые черты последнего сохраняются.

При температуре 6000 К максимум излучения приходится на видимый свет (λмакс ≈ 0,5 мкм). Отсюда следует, что наиболее выгодный в световом отношении источник света должен иметь такую температуру, при которой световой КПД (отношение энергии излучения, приходящейся на видимую часть спектра, ко всей энергии излучения) оказывается около 15%, поскольку большая часть энергии излучения приходится на ИК лучи. У современных осветительных ламп температура нити накала равна приблизительно 3000 К, что соответствует световому КПД примерно 3%.

На законе Вина основана оптическая пирометрия. Так, максимум излучения Солнца приходится на видимый свет (λмакс ≈ 0,47 мкм). Поэтому, согласно закону Вина, имеем: .

Законы Стефана-Больцмана и Вина являются частными законами излучения абсолютно черного тела, они не дают полной картины распределения энергии по длинам волн при различных температурах.

Световые кванты. Формула Планка

Макс Планк высказал революционную гипотезу, согласно которой электромагнитная энергия может излучаться только определенными порциями – квантами ε – энергии. Поэтому излучение любого тела производится с энергией, кратной минимальному значению nε (n = 1, 2, 3,...). Квант энергии электромагнитного излучения пропорционален частоте (обратно пропорционален длине волны): , где с – скорость света в вакууме, h = 6,625·10-34 Дж·с – постоянная Планка.

По этой формуле можно вычислить квант энергии для излучения с любой длиной волны.

Процесс поглощения также, как и процесс излучения электромагнитной энергии, имеем прерывистый (квантовый) характер. Особенно заметны квантовые особенности поглощения и излучения для коротких длин волн, порождаемых атомами и молекулами. Поэтому законы классической физики, полученные из наблюдений за макрообъектами, не вполне пригодны для описания процессов, происходящих на уровне атомов и молекул или еще более глубоких степенях изучения материи.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: