Филогения бактерий на основе анализа последовательности полимеров

Особенности эволюции прокариот включают несколько аспектов. Один их них связан с построением филогенетической системы бактерий как конечного результата эволюции. Эту систему пытались построить сначала на основе сравнительно-морфологических исследовании. Уже к концу 20-х гг. оказалось, что такой подход не дает прочной основы и получающиеся системы в высокой степени произвольны. Поэтому сравнительно-морфологический подход, аналогичный тому, который был применен ко всему множеству низших организмов и основан прежде всего на циклах развития, был практически оставлен и заменен подходом сравнительно-биохимическим. Эта замена сразу же поставила систематику бактерий в особое положение по сравнению с системой иных низших организмов, для которых биохимический подход был и остается крайне ограниченным. Подобно сравнительно-морфологическому подходу, сравнение биохимии бактерий основывалось на представлении об эволюции от простого к сложному и субъективном решении вопроса о том, что же именно считать простым и что сложным. Ни тот, ни другой подход нельзя считать полностью оставленным, поскольку оба они дали ценные группировки явлений. Эти классификационные системы имеют практическую ценность как для идентификации, так и в качестве операционных понятий, но совершенно очевидно, что они объединяют разнородные организмы. Структура этих систем комбинаторна. Как бы ни были они ценны для экологии или истории развития, но эти системы, вероятно, в принципе не могут отражать филогению.

Наибольшей интерес сейчас вызывает филогенетический подход, основанный на анализе белковых и нуклеотидных последовательностей.

Применение сравнительных методов изучения многообразия микроорганизмов сводится здесь к изучению многообразия отдельных компонентов клетки от суммарной оценки общего сходства всего генома до сравнения продуктов отдельных генов. Геносистематики видят проблему лишь в том, чтобы установить, какие именно макромолекулы и какие приемы их сравнения нужно применить, чтобы получить подлинную картину филогенеза. Несколько подобных приемов было применено, и они дали картину сходства соответствующих макромолекул. Сумма результатов гено- или хемотаксономических исследований позволила установить дистанцию между представителями ныне существующих групп бактерий как по общему сходству, так и по отдельным продуктам генов.

Изучение аминокислотных последовательностей в белках, осуществляющих окислительно-восстановительные реакции проводилось на ферредоксинах, флаводоксинах, рубредоксинах, цитохромах С, азуринах, пластоцинанинах. Результаты этих исследований, сведенные воедино, позволили Шварцу и Дайхофф (Schwarz, Dayhoff, 1978) построить предполагаемое эволюционное дерево, существенной особенностью которого было разделение фототрофных организмов на несколько групп. Анаэробные фототрофные бактерии оказались очень мало связанными между собой. Далее из них появились аэробные хемотрофные организмы, а затем образующие кислород фототрофные синезеленые водоросли. Таким образом, группы фототрофов полифилетичны, линии, ведущие к митохондриям, протопластам, эвкариотам, — независимы.

Геносистематики считают, что использование таких белков, которые не распространены универсально во всем живом мире, открывают лишь ограниченные возможности для выявления филогении. Универсальными белками могли бы быть транскриптазы, РНК-полимеразы и другие ферменты, связанные с синтезом нуклеиновых кислот и белков. Однако более удобным приемом оказалось изучение рибосомальных РНК. Фоке, Везе и их сотрудники (Fox et al., 1980) пришли к выводам о том, что существуют три фактически независимые группы: истинные бактерии; архебактерии и эквиваленты цитоплазматических компонентов эвкариотной клетки.

Истинные бактерии разделены на несколько линий развития: цианобактерии (= синезеленые водоросли); зеленые строго анаэробные бактерии Chlorobium; зеленые окситолерантные нитчатые Chloroflexacae; пурпурные и большинство грамотрицательных бактерий: микрококки; грамположительные; спирохеты и лептоспиры. Особенно показательным оказалось распределение по разным линиям фотосинтезирующих бактерий.

{152}

Систематика на основе 16S рРНК, не коррелирует со следующими признаками: 1) формой клеток; 2) способом размножения клеток; 3) отсутствием клеточной стенки у микоплазм, которые по 16S рРНК оказались производными грамположительных бактерий. Данные по определению белковых и нуклеоидных последовательностей фототрофных бактерий свидетельствуют о том, что они возникли несколькими независимыми путями. Прокариотные организмы с мицелиальным строением — актиномицеты — и родственные им коринеподобные не составляют единой группы, так как состав клеточной стенки у них оказался эволюционно-лабильным и привел к конвергентной эволюции не менее чем в 5 линиях. Корреляция имеется с грамположительным и грамотрицательным строением клеточной стенки и спорообразованием (Stackebrandt, Woese, 1981).

Итак, классификация по составу 16S рРНК, в общем согласуется с классификацией на уровне родов бактерий, лишь в относительно редких случаях виды одного рода оказывались в разных классификационных группах по составу 16S рРНК. Например, спорообразующие организмы, объединенные сейчас в два рода аэробных Bacillus и анаэробных Clostridium, оказались в одной группе с утратившими способность к спорообразованию анаэробными Eubacterium, Thermoactinomyces. Микробиологи очень сомневаются, что спорообразующие бактерии составляют единую группу, и эти сомнения получили поддержку в связи с резкими различиями в составе ДНК: у этих организмов Г+Ц варьирует чрезвычайно сильно, не оставляя возможности предполагать гомологичность ДНК, а исследования с 16S рРНК подтвердили единство бацилл.

Отличия архебактерий от истинных бактерий сводятся к следующему. 1. Состав клеточной стенки иной, чем пептидогликановый, причем стенки эти очень различны по составу. 2. В состав клеточных мембран входят эфиры глицерина с фитанилами вместо эфиров глицерина с жирными кислотами. 3. Уникально строение транспортной РНК. 4. Необычна структура субъединиц РНК-полимеразы. 5. Метановым бактериям свойственны уникальный спектр коферментов и механизм фиксации СО2.

Фактически классификация по 16S рРНК представляет частную классификацию по одному из функциональных аппаратов клетки — белоксинтезирующей системе. Вопрос состоит в том, насколько основателен выбор этой системы как независимой системы отсчета.

Любая классификация есть способ выяснить закономерности. Поэтому нет «естественных систематик».

Мнение, отрицающее возможность существенной роли межвидового переноса генов в эволюционных взаимоотношениях бактериального мира, сводится к тому, что применяемые молекулярно-биологические методы способствовали получению хорошо согласующихся данных, различающихся лишь в деталях. Количественная оценка филогенетических отношений, полученная молекулярно-биологическими методами, отражает естественный ход эволюционных событий, и таким образом бактериальная филогения может быть определена экспериментально.

Нет оснований отрицать общебиологическую значимость полученных молекулярно-биологических данных, хотя необходимо учитывать пределы приложимости результатов разных методов к сравнению организмов. Так, сходный состав Г+Ц еще не говорит о сходстве организмов, хотя различие в Г+Ц подразумевает различие самих организмов. Высокое сходство организмов по ДНК-ДНК гомологии говорит об их родстве по меньшей мере внутри рода, но малое сходство еще не означает, что роды организмов неродственны. Сравнение последовательности в 16S рРНК малоинформативно при низком уровне критерия SAB. Знание ограничений метода сравнения существенно для правильной интерпретации его результатов.

В общем, можно утверждать, что генетическое родство бактерий может быть оценено химическими методами. Это родство очень слабо коррелирует с функциональными характеристиками бактерий. Однако более спорным является вопрос об отношении измеренного таким способом генетического родства с последовательностью происхождения. Чтобы обосновать переход от сходства между геномами современных организмов к последовательности их происхождения, вводится предположение о равномерном темпе замены оснований в нуклеотидной последовательности. Тогда дендрограммы SAB (или аналогичных показателей) автоматически превращаются в филогенетические деревья, подобно

{153}

тому как в свое время иерархическая систематика высших организмов, основанная на сравнительно-морфологическом подходе, превратилась в отражение их генеалогии. Представление о равномерном темпе замены основании остается одним из самых уязвимых мест во всем построении.

В самом деле, обоснованием полифилетичности происхождения бактерий могло служить обнаружение изолированных групп организмов, не связанных с основной массой видов по молекулярно-биологическим показателям. Именно такую группу представляют архебактерии. Их отличие от истинных бактерий рассматривается как достаточно большое, чтобы искать общего предка лишь в весьма отдаленной и гипотетической области. Более того, вопрос о единстве самой группы архебактерий остается открытым. Отличаясь от истинных бактерий, архебактерии различны и между собой. Вместе с тем своеобразие архебактерий основывается не на каком-либо одном, а на целом ряде хемотаксономи-ческих показателей, следовательно, здесь выполнено важнейшее условие — сравнение по ряду независимых признаков. Поиск гипотетического общего предка — прогенот — представляет попытку согласовать новые факты с традиционной схемой.

Отсюда возникает вопрос о реальном, не условно генетическом времени в эволюции микробного мира. Он может быть решен лишь на основе исторических наук, таких, как геология и палеонтология.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: