Действие сосредоточенной силы (основная задача) Какое предположение делается в отношении зоны, расположенной непосредственно у сосредоточенной силы?

Поставленная задача для упругого (а следовательно, и любого линейно деформи-рованного) полупространства впервые была полностью решена проф. Ж.. Буссинеском

(1885), а определение напряжений для площадок, параллельных ограничивающей полупространство плоскости,-проф.В.Кирпичевым и проф.Н.А. Цытовичем (1923-1934).

Задача определить напряжения σz, τzy,τzx, как наиболее часто используемых в расчетах.

Для упрощения расчетов определяют напряжения σR в точке М с полярными координатами R и β. Окончательный результат, который полностью совпадает с решением Буссинеска, принимают как постулат, что напряжение σR пропорционально cosβ и обратно пропорционально квадрату расстояния от точки приложения сосредоточенной силы R2.

Предполагается, что сплошная среда является бесконечно прочной и не может разрушаться. Ж.Буссинеск, чтобы обойти это обстоятельство, не рассматривал небольшую зону, непосредственно находящуюся у сосредоточенной силы.

Таким образом: ; для перемещений:

где: - коэф.линейно деформируемого полупространства; Е0 0 -модули общей и поперечной (аналогичный коэф. Пуассона) деформаций

А - некоторый коэффициент, определяемый из условия равновесия:

Подставляя А в формулу получим: .



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: