Модуль записи и воспроизведения

Модуль записи и воспроизведения звуковой системы осуществляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access — канал прямого доступа к памяти).

Звук, как известно, представляет собой продольные волны, свободно распространяющиеся в воздухе или иной среде, поэтому звуковой сигнал непрерывно изменяется во времени и в пространстве.

Запись звука — это сохранение информации о колебаниях звукового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и цифровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.

Если при записи звука пользуются микрофоном, который преобразует непрерывный во времени звуковой сигнал в непрерывный во времени электрический сигнал, получают звуковой сигнал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота — высоту звукового тона, постольку для сохранения достоверной информации о звуке напряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать частоте колебаний звукового давления.

На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем что ПК оперирует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая система, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обработки сигнала с помощью ПК необходимо обратное преобразование цифрового сигнала в аналоговый.

Аналого-цифровое преобразование представляет собой преобразование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования. Схема аналого-цифрового преобразования звукового сигнала представлена на рис. 4.24.

Рис. 4.24. Схема аналого-цифрового преобразования звукового сигнала

Предварительно аналоговый звуковой сигнал поступает на аналоговый фильтр, который ограничивает полосу частот сигнала.

Дискретизация сигнала заключается в выборке отсчетов аналогового сигнала с заданной периодичностью и определяется частотой дискретизации. Причем частота дискретизации должна быть не менее удвоенной частоты наивысшей гармоники (частотной составляющей) исходного звукового сигнала. Поскольку человек способен слышать звуки в частотном диапазоне от 20 Гц до 20 кГц, максимальная частота дискретизации исходного звукового сигнала должна составлять не менее 40 кГц, т. е. отсчеты требуется проводить 40 000 раз в секунду. В связи с этим в большинстве современных звуковых систем ПК максимальная частота дискретизации звукового сигнала составляет 44,1 или 48 кГц.

Рис. 4.25. Дискретизация по времени и квантование по уровню аналогового сигнала

Квантование по амплитуде представляет собой измерение мгновенных значений амплитуды дискретного по времени сигнала и преобразование его в дискретный по времени и амплитуде. На рис. 4.25 показан процесс квантования по уровню аналогового сигнала, причем мгновенные значения амплитуды кодируются 3-разрядными числами.

Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при квантовании зависит от количества разрядов кодового слова. Если значения амплитуды записать с помощью двоичных чисел и задать длину кодового слова N разрядов, число возможных значений кодовых слов будет равно 2N. Столько же может быть и уровней квантования амплитуды отсчета. Например, если значение амплитуды отсчета представляется 16-разрядным кодовым словом, максимальное число градаций амплитуды (уровней квантования) составит 216= 65 536. Для 8-разрядного представления соответственно получим 28 = 256 градаций амплитуды.

Аналого-цифровое преобразование осуществляется специальным электронным устройством — аналого-цифровым преобразователем (АЦП), в котором дискретные отсчеты сигнала преобразуются в последовательность чисел. Полученный поток цифровых данных, т.е. сигнал, включает как полезные, так и нежелательные высокочастотные помехи, для фильтрации которых полученные цифровые данные пропускаются через цифровой фильтр.

Цифроаналоговое преобразование в общем случае происходит в два этапа, как показано на рис. 4.26. На первом этапе из потока цифровых данных с помощью цифроаналогового преобразователя (ЦАП) выделяют отсчеты сигнала, следующие с частотой дискретизации. На втором этапе из дискретных отсчетов путем сглаживания (интерполяции) формируется непрерывный аналоговый сигнал с помощью фильтра низкой частоты, который подавляет периодические составляющие спектра дискретного сигнала.

Рис. 4.26. Схема цифроаналогового преобразования

Для записи и хранения звукового сигнала в цифровой форме требуется большой объем дискового пространства. Например, стереофонический звуковой сигнал длительностью 60 с, оцифрованный с частотой дискретизации 44,1 кГц при 16-разрядном квантовании для хранения требует на винчестере около 10 Мбайт.

Для уменьшения объема цифровых данных, необходимых для представления звукового сигнала с заданным качеством, используют компрессию (сжатие), заключающуюся в уменьшении количества отсчетов и уровней квантования или числа бит, приходящихся на один отсчет.

Подобные методы кодирования звуковых данных с использованием специальных кодирующих устройств позволяют сократить объем потока информации почти до 20 % первоначального. Выбор метода кодирования при записи аудиоинформации зависит от набора программ сжатия— кодеков (кодирование-декодирование), поставляемых вместе с программным обеспечением звуковой карты или входящих в состав операционной системы.

Выполняя функции аналого-цифрового и цифроаналогового преобразований сигнала, модуль записи и воспроизведения цифрового звука содержит АЦП, ЦАП и блок управления, которые обычно интегрированы в одну микросхему, также называемую кодеком. Основными характеристиками этого модуля являются: частота дискретизации; тип и разрядность АЦП и ЦАП; способ кодирования аудиоданных; возможность работы в режиме Full Duplex.

Частота дискретизации определяет максимальную частоту записываемого или воспроизводимого сигнала. Для записи и воспроизведения человеческой речи достаточно 6 — 8 кГц; музыки с невысоким качеством — 20 — 25 кГц; для обеспечения высококачественного звучания (аудиокомпакт-диска) частота дискретизации должна быть не менее 44 кГц. Практически все звуковые карты поддерживают запись и воспроизведение стереофонического звукового сигнала с частотой дискретизации 44,1 или 48 кГц.

Разрядность АЦП и ЦАП определяет разрядность представления цифрового сигнала (8, 16 или 18 бит). Подавляющее большинство звуковых карт оснащено 16-разрядными АЦП и ЦАП. Такие звуковые карты теоретически можно отнести к классу Hi-Fi, которые должны обеспечивать студийное качество звучания. Некоторые звуковые карты оснащаются 20- и даже 24-разрядными АЦП и ЦАП, что существенно повышает качество записи/воспроизведения звука.

Full Duplex (полный дуплекс) — режим передачи данных по каналу, в соответствии с которым звуковая система может одновременно принимать (записывать) и передавать (воспроизводить) аудиоданные. Однако не все звуковые карты поддерживают этот режим в полном объеме, поскольку не обеспечивают высокое качество звука при интенсивном обмене данными. Такие карты можно использовать для работы с голосовыми данными в Internet, например, при проведении телеконференций, когда высокое качество звука не требуется.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: