Общая часть

Чтобы обеспечить нормальный микроклимат в животноводческих и птицеводческих помещениях, применяют вентиляционные установки дискретного действия и непрерывного действия. Установки непрерывного действия включаются от соответствующих датчиков, регуляторов или вручную изменяют свою производительность в зависимости от изменяющихся параметров микроклимата. Установки дискретного действия включаются и отключаются от соответствующих датчиков, регуляторов или вручную, в зависимости от изменяющихся параметров воздушной среды помещения. Производительность установок при работе не изменяется.

В условиях непрерывного действия производительность можно изменять при помощи задвижки воздухопровода или изменением частоты вращения вентилятора.

Рассмотрим эти способы регулирования.

1. – характеристика вентиляционной сети .

2. – характеристика вентилятора при частоте вращения n.

Для каждой воздухопроводной сети можно построить зависимость потерь напора от расхода воздуха. Так как , а , то в общем виде

где k – коэффициент, характеризующий аэродинамические свойства воздухопроводной сети, определяет характер зависимости Н от Q2.

Зависимость называется характеристикой вентиляционной сети. Для вентилятора при неизменных частотах вращения имеются свои характеристики .

На рисунке показана характеристика вентиляционной сети 1, которая пересекает характеристику вентилятора 2 в рабочей точке А при угловой частоте вращения ω1 и характеристику вентилятора 2’ в рабочей точке С при угловой частоте вращения ω2.

При дроссельном регулировании производительности вентилятора можно уменьшить, перекрыв трубопровод дроссельной заслонкой. При этом аэродинамическое сопротивление вентиляционной сети увеличивается. При неизменной угловой частоте вращения вентилятора ω1 с уменьшением Q рабочая точка А будет перемещаться по кривой 2 влево и при Q=Q2 займет положение точки В, через которую теперь будет проходить вентиляционная характеристика сети 1’. С открытием дроссельной заслонки точка пересечения 1 и 2 будет перемещаться слева направо по кривой 2.

При уменьшении частоты вращения его производительность будет уменьшаться: точка А перемещается по кривой 1 вниз. При Q=Q2 точка А окажется в положении точки С. Следовательно, регулирование производительности вентилятора в пределах от Q1 до Q2 и наоборот, будет происходить на участке АВ кривой 2 при дроссельном регулировании и на участке АС 1 при изменении частоты вращения вентилятора.

Из рисунка видно, что при дроссельном регулировании производительности вентилятора уменьшение производительности вызывает увеличение напора, а при уменьшении производительности уменьшается напор. Требуемый напор, а следовательно, и мощность во втором случае значительно уменьшается. При Q2 напора НВ в несколько раз больше напора НС. Следовательно, мощность, затрачиваемая вентилятором для обеспечения определенной производительности при дроссельном регулировании, значительно больше, чем мощность при регулировании производительности изменением частоты вращения электродвигателя.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: