Рецепторный аппарат глаза

Рецепторный аппарат глаза представлен зрительной частью сетчатой оболочки (сетчатки).

Внутренняя чувствительная оболочка глазного яблока, сетчатка (tunica interna sensoria bulbi, retina) состоит из наружного пигментного слоя (pars pigmentosa, stratum pigmentosum) и внутреннего светочувствительного не­рвного (pars nervosa). Функционально выделяют заднюю большую зрительную часть сетчатки (pars optica retinae), меньшие части цилиарную, покрывающую цилиарное тело (pars ciliares retinae) и радужковую, покрывающую заднюю поверхность радужки (pars iridica retina). В зад­нем полюсе глаза находится желтоватого цвета пятно (macula) с неболь­шим углублением - центральной ямкой (fovea centralis).

Свет входит в глаз через роговицу, жидкость передней камеры, хруста­лик, жидкость задней камеры, стекловидное тело и, пройдя через толщу всех слоев сетчатки, попадает на отростки фоточувствительных нервных клеток, называемых палочками и колбочками, в наружных сегментах кото­рых начинаются физиологические процессы возбуждения, фототрансдукции. Таким образом, сетчатка глаза человека относится к типу так называемых инвертированных органов, т.е. таких, в которых фоторецепторы направле­ны от света и образуют самые глубокие слои сетчатки, обращенные к слою пигментного эпителия.

Сетчатка состоит из трех типов радиально расположенных нейронов и двух слоев синапсов. Первый тип нейронов, расположенных наружно, - это фоторецепторные нейроны (палочковые и колбочковые), второй тип - биполярные нейроны, осуществляющие контакты между первым и третьим ти­пом, третий тип - ганглионарные нейроны. Кроме того, имеются нейроны, осуществляющие и горизонтальные связи, - горизонтальные клетки и амакриновые клетки. Наружный нуклеарный слой содержит тела фоторецеп |торных нейронов, внутренний нуклеарный слой - тела биполярных, горизонтальных и амакриновых клеток, а слой ганглиозных клеток - тела ган-глиозных и перемещенных амакриновых клеток.

В наружном сетчатом слое контакты между колбочковыми нейронами и палочковыми нейронами осуществляются вертикально ориентированными биполярными клетками и горизонтально ориентированными

горизонтальными клетками, во внутреннем сетчатом слое осуществляется переключе­ние информации с вертикально ориентированных биполярных нейронов на ганглиозные клетки, а также на различные виды вертикально и горизон­тально направленных амакриновых клеток, влияющих на интеграцию сигнала ганглиозных клеток. В этом слое происходят кульминация всех интегральных процессов, связанных со зрительным образом, и передача инфор­мации через зрительный нерв в мозг. Через все слои сетчатки проходят pa- i диальные глиальные клетки (клетки Мюллера).

В сетчатке выделяют также наружную пограничную мембрану, которая состоит из множества описанных выше синаптических комплексов, расположенных между клетками Мюллера и фоторецепторами; слой нервных волокон, который состоит из аксонов ганглиозных клеток. Последние, достигнув внутренней части сетчатки, поворачивают под прямым углом и затем идут параллельно внутренней поверхности сетчатки к месту выхода

зрительного нерва. Они не содержат миелина и не имеют шванновских оболочек, что обеспечивает их прозрачность. Внутренняя пограничная мембрана пред­ставлена окончаниями отростков мюллеровых клеток и их базальными мем­бранами. Кнутри от центральной ямки (fovea centralis) имеется зона длиной 1,7 мм, в которой отсутствуют фоторецепторы сетчатки - слепое пятно, а аксоны ганглиозных нейроцитов формируют зрительный нерв. Последний при выходе из сетчатки через решетчатую пластинку склеры виден как диск зрительного нерва (discus nervi optici) с приподнятыми в виде валика кра­ями и небольшим углублением в центре (excavatio disci).

Зрительный нерв является промежуточной частью зрительного анализатора. По нему информация о внешнем мире передается от сетчатки в центральные отделы зрительной системы. Впереди турецкого седла и воронки гипофиза волокна зритель­ного нерва образуют перекрест (хиазма), где волокна, идущие от носовой полови­ны сетчатки, перекрещиваются, а идущие от вилочной части сетчатки не перекре­щиваются. Далее в составе зрительного тракта перекрещенные и неперекрещенные нервные волокна направляются в латеральное коленчатое тело промежуточного мозга соответствующей гемисферы (подкорковые зрительные центры) и верхние холмики крыши среднего мозга. В латеральном коленчатом теле аксоны нейроцитов третьего нейрона заканчиваются и контактируют со следующим нейроном, аксоны которого, проходя под чечевицеобразную часть внутренней капсулы, формируют зрительную лучистость (radiatio optica), направляются в затылочную долю, зритель­ные центры, располагающиеся в области шпорной борозды и в экстрастриарные зоны.

Фоторецепторы сетчатки делятся на два типа: палочковые и колбочко-вые (см. рис.168). Палочковые клетки являются рецепторами сумеречного (ночного зрения), колбочковые клетки - фоторецепторами дневного зре­ния. Морфологически фоторецепторные нейроны представляют собой длин­ные цилиндрической формы клетки, которые имеют несколько отделов. Дистальная часть фоторецепторов - наружный сегмент (палочка или колбочка) - содержит фоторецепторные мембраны, где и происходит поглощение света и начинается зрительное возбуждение. Наружный сегмент свя­зан с внутренним соединительной ножкой - цилией. Во внутреннем сегмен­те находятся множество митохондрий и полирибосом, цистерны аппарата Гольджи и небольшое количество элементов гранулярного и гладкого эн-доплазматического ретикулума. В сегменте происходит синтез белка. Тело клетки, расположенное проксимальнее внутреннего сегмента, переходит в отросток (аксон), который формирует синапс с врастающими внутренни­ми окончаниями дендритов биполярных и горизонтальных нейроцитов. Од­нако палочковые клетки отличаются от колбочковых клеток. У палочковых нейронов наружный сегмент цилиндрической формы, а диаметр внутреннего сегмента равен диаметру наружного. Наружные сегменты колбочковых клеток обычно конические, а внутренний сегмент по диамет­ру значительно превосходит наружный.

Наружный сегмент представляет собой стопку плоских мембранных мешочков — дисков, число которых доходит до 1000. В процессе эмбриональ­ного развития диски палочек и колбочек образуются как складки впячивания плазматической мембраны реснички, растущей из апикального конца фоторецептора. В палочках новообразование складок продолжается у осно­вания наружного сегмента в течение всей жизни. Вновь появившиеся склад­ки оттесняют старые в дистальном направлении. При этом диски отрыва­ются от поверхности мембран и превращаются в замкнутые структуры, полностью отделенные от оболочки наружного сегмента. Отработанные ди-стальные диски фагоцитируются клетками пигментного эпителия. Дистальные диски колбочек так же, как у палочек, фагоцитируются пигментными клетками. Механизм синтеза новых дисков в колбочках неясен.

Таким образом, фоторецепторный диск в наружном сегменте палочко­вых нейронов полностью отделен от плазматической мембраны. Он образо­ван двумя фоторецепторными мембранами, соединенными по краям и внутри диска, на всем его протяжении имеется узкая щель. У края диска щель расширяется, образуется петля, внутренний диаметр которой состав­ляет несколько десятков нанометров. Параметры диска: толщина - 15 нм, ширина внутридискового пространства - 1 нм, расстояние между диска­ми - междискового цитоплазматического пространства - 15 нм.

У колбочек в наружном сегменте диски не замкнуты и внутридисковое пространство сообщается с внеклеточной средой. У них бо­лее крупное, округлое и светлое ядро, чем у палочек. Во внутреннем сег­менте колбочек имеется участок, называемый эллипсоидом, состоящий из липидной капли и скопления плотно прилегающих друг к другу митохонд­рий. Внутренний конец аксона каждой колбочки имеет пуговчатое расши­рение, которое иногда называют синоптическим тельцем или ножкой кол­бочки. Найдены также прямые контакты ножек смежных колбочек друг с другом, что создает основу для межрецепторной передачи. Другие ножки разделяются отростками мюллеровых клеток.

От ядросодержащей части отходят центральные отростки - аксоны, которые образуют синаптические соединения с дендритами палочковых биполяров, горизонтальных клеток, а также с карликовыми и плоскими биполярами. Электронная микроскопия клеток, окрашенных по Гольджи, показала, что имеются два способа образования синаптических окончаний с колбочками: инвагинирующие синапсы для контактов дендритов с синап-тической лентой (пластинкой) в области инвагинации и плоский базальный синоптический контакт на поверхности ножки вдали от синаптической пластинки. Длина колбочек в центре желтого пятна около 75 мкм, толщи­на – 1-1,5 мкм.

Структура фоторецепторной мембраны диска строго упорядочена и обеспечивает физиологические процессы возбуждения (фототрансдукции) и адаптации зрительной клетки.

Фоторецепторная мембрана диска наружного сегмента палочковых ней­ронов составляет около 7 нм (двойной слой фосфолипидных молекул - 4 нм, гидрофильные интегральные фрагменты белковых молекул - 3 нм), полипептидные цепи фрагментов белковых молекул пронизывают мембра­ну насквозь, изгибаясь несколько раз, а на поверхности их располагаются более гидрофильные примембранные белки и олигосахариды. Основным белком фоторецепторной мембраны (до 95-98 % интегральных белков) яв­ляется зрительный пигмент родопсин, который обеспечивает поглощение света в некоторой характерной области длин волн и тем самым определяет спектральный диапазон той или иной фоторецепторной клетки, запускает фоторецепторный процесс.

Зрительный пигмент представляет собой хромогликопротеид. Эта сложная мо­лекула содержит одну хромофорную группу, две олигосахаридные цепочки и водо-нерастворимый мембранный белок опсин. Хромофорной группой зрительных пигмен­тов служит ретиналь-1 (альдегид витамина А) или ретиналь-2 (альдегид витамина А2). Все зрительные пигменты, содержащие ретиналь-1, относятся к родопсинам, а содержащие ретиналь-2 - к порфиропсинам. Светочувствительная молекула зритель­ного пигмента при поглощении одного кванта света претерпевает ряд последова­тельных превращений, в результате которых обесцвечивается. Ретиналь на последних стадиях фотолиза отщепляется от белка - опсина и переносится в пигментный эпи­телий. Поглощение одного фотона вызывает изомеризацию хромофора фотопигмен­тов и превращение его из 11-цис-формы в полную трансконфигурацию. В результате изомеризации образуется конформационно активное промежуточное соединение фотопигмента, который запускает каскад электрических реакций. На первой ступе­ни каскада происходит активация трансдуцина (G-белка), который в свою очередь активирует цГМФ-фосфодиэстеразу. В результате снижения уровня цГМФ в цито­плазме наружного сегмента фоторецепторов происходит закрытие цГМФ-зависимых ионных мембранных каналов и фоторецепторная клетка гиперполяризуется.

Колбочки содержат три типа зрительных пигментов (колбочковый оп­син), различия которых определяются структурой опсиновой молекулы, с максимальной чувствительностью в длинноволновой (558), средневолновой (531) и коротковолновой (420) части спектра. Один из пигментов - иодопсин - чувствителен к длинноволновой части спектра. Известно, что моле­кула опсина и средневолновых чувствительных колбочковых пиг­ментов (идентичность по аминокислотному набору 96 %) состоит из 364 аминокислот.

Морфологические исследования последнего времени показали значи­тельное отличие коротковолновых специфических колбочек (S-колбочки, голубые) от средне- и длинноволновых. Известно, что S-колбочки имеют более длинный внутренний сегмент, что позволяет им проникать дальше в субретинальное пространство; их внутренний сегмент утолщен в централь­ной области и более тонок в периферической части сетчатки; они имеют меньшую по величине и морфологически различимую ножку по сравнению с длинноволновыми колбочками. При пониженной плотности в фовеальной области (3 % от других кол­бочек) S-колбочки имеют еще и другое распределение в сетчатке и не скла­дываются в регулярную гексагональную мозаику, типичную для других кол­бочек. Пигмент, чувствительный к коротковолновой части спектра, более сходен с родопсином. У человека гены, кодирующие пигмент коротковол­новой части спектра и родопсина, находятся на длинном плече 3-й и 7-й хромосом и имеют сходство по структуре. Различные видимые нами цвета зависят от соотношения трех видов стимулируемых колбочек.

Отсутствие длинно- и средневолновых колбочковых пигментов обусловлено соответствующими изменениями гена на Х-хромосоме, которые определяют два типа дихромазии: протанопию и дейтеранопию. Протанопия - нарушение цвето­ощущения на красный цвет (ранее ошибочно называлось дальтонизмом). У Джона Дальтона благодаря последним достижениям молекулярной генетики выявлена дей-теранопия (нарушение цветоощущения на зеленый цвет) с простым длинноволно­вым геном опсина в ДНК.

Горизонтальные нервные клетки (neuronum horisontalis) располагаются в один или два ряда. Они отдают множество дендритов, которые контактиру­ют с аксонами фоторецепторных клеток. Аксоны горизонтальных нейронов, имеющие горизонтальную ориентацию, могут тянуться на довольно значи­тельном расстоянии и вступать в контакт с аксонами как палочковых, так и колбочковых нейронов. Передача возбуждения с горизонтальных клеток на синапсы фоторецепторного и биполярного нейронов вызывает времен­ную блокаду в передаче импульсов от фоторецепторов (эффект латерально­го торможения), что увеличивает контраст в зрительном восприятии.

По последним данным, горизонтальные клетки образуют малые круги, влияющие на передачу информации внутри сетчатки, благодаря синаптическим связям, расположенным латерально от синаптических полосок фо­торецепторов, вместе с центрально расположенными синапсами биполяр­ных клеток. Считают, что существует обратная связь между горизонтальной клеткой и фоторецептором. Круг дает информацию биполярной клетке об окружении.

Биполярные нервные клетки (neuronum bipolaris) соединяют палочковые и колбочковые нейроны с ганглиозными клетками сетчатки. В центральной части сетчатки несколько палочковых нейронов соединяются с одной биполярной, а колбочковые нейроны контактируют в соотношении 1:1 или 1:2. Такое сочетание обеспечивает более высокую остроту цветового виде­ния по сравнению с черно-белым. Биполярные клетки имеют радиальную ориентацию. Различают несколько разновидностей биполярных клеток по строению, содержанию синаптических пузырьков и связям с фоторецепторами. Биполярные нейроны, контактирующие с палочковыми нейронами, условно называют палочковыми биполярами, а контактирующие с колбочковыми нейронами - колбочковыми биполярами. Биполярные клетки иг­рают существенную роль в концентрации импульсов, получаемых от фото­сенсорных нейронов и затем передаваемых ганглиозным клеткам.

Взаимоотношения биполярных клеток с палочковыми и колбочковыми нейронами неидентичны. Несколько палочковых клеток (15-20) конвергируют на одной биполярной клетке в наружном сетчатом слое, а аксон биполяров во внутреннем сетчатом слое дивергирует на несколько типов амакриновых клеток, которые конвергируют на ганглионарной клетке. Значение дивергенции и конвергенции заключается в ослаблении или усилении палочкового сигнала, что обусловливает чувствительность зрительной систе­мы к единичному кванту света.

Колбочковые пути конвергируют в меньшей степени, чем палочковые. Колбочковые пути у человека и обезьян состоят из двух параллельных информационных каналов: прямого (от фоторецептора на ганглионарную клет­ку) и непрямого (через биполярную клетку). В результате такой организа­ции один канал проводит на ганглионарную клетку информацию о стиму­ле ярче фона, а другой о стимуле темнее фона. Это основа контраста в зри­тельном восприятии.

Во внутреннем сетчатом слое, где информация с колбочковых биполя-ров переходит на ганглионарные клетки, находятся только синапсы возбуждающих каналов.

Амакринные клетки относятся к интернейронам, которые осуществляют связь на втором синаптическом уровне вертикального пути: фоторецеп­тор биполярганглионарная клетка. Их синаптическая активность во внутреннем сетчатом слое проявляется в интеграции, модуляции, включе­нии сигналов, идущих к ганглионарным клеткам. Эти клетки, как правило, не имеют аксонов, однако некоторые амакриновые клетки содержат длин­ные аксоноподобные отростки. Иммуноцитохимические исследования, внутриклеточная регистрация электрической активности позволили выделить 40 различных морфологических подтипов амакриновых клеток. По диаметру поля их дендритов различают клетки с узкими, маленькими, средними и широкими полями. Амакриновые клетки А|7 осуществляют обратную синаптическую связь с палочковыми биполярами, так же как и горизонтальные клетки с фоторецепторами. Синапсы амакриновых клеток бывают химичес­кими и электрическими. Например, дистальные дендриты амакриновой клетки А2 образуют синапсы с аксонами палочковых биполяров, а прокси­мальные дендриты — с ганглионарными клетками. Более крупные дендри­ты А2 формируют электрические синапсы с аксонами колбочковых бипо­ляров. В палочковых путях играют большую роль допаминергические и ГАМКергические амакриновые клетки. Они ремоделируют палочковые сиг­налы и осуществляют с ними обратную связь.

Ганглионарные клетки — наиболее крупные клетки сетчатки, имеющие большой диаметр аксонов, способных проводить электрические сигналы. В их цитоплазме хорошо выражено базофильное вещество. Они собирают информацию от всех слоев сетчатки как по вертикальным путям (фоторецепторы биполяры ганглионарные клетки), так и по латеральным пу­тям (фоторецепторы горизонтальные клетки биполяры амакрино­вые клетки ганглионарные клетки) и передают ее в мозг. Тела ганглионарных клеток образуют слой, который носит название ганглионарного (stratum ganglionare), а их аксоны (более миллиона волокон) формируют внутренний слой нервных волокон (stratum neurofibrarum), переходящий в зрительный нерв, где они уже окружены миелиновой оболочкой. Ганглио­нарные клетки подразделяются по морфологическим и функциональным свойствам. Выделяют в настоящее время 18 типов ганглионарных клеток. Ранее морфологически выделенные а-, В- и у-типы соответствуют физио­логическим Y, X, W.

Высокую остроту зрения и цветовое зрение в настоящее время связывают с наличием парво- и магноганглионарных клеток (соответственно). Парвоганглионар-ные клетки карликовые клетки (а-клетки кошки), имеющие средний размер телаи маленькое дерево дендритов, входят в «карликовый» путь и связаны с парвоцел-люлярными (мелкоклеточными) слоями латеральных коленчатых тел. Магноклетки (а-клетки кошки) очень разнообразны (малые и большие зонтичные клетки): с большими телами и многочисленными укороченными ветвями, маленькими тела­ми и большим разветвлением дендритов, которые проецируются в крупноклеточ­ные слои латеральных коленчатых тел. Выделяют ганглионарные клетки, связанные с палочковыми и колбочковыми нейронами, с on- и off-центрами, которые отве­чают на световое раздражение деполяризацией или гиперполяризацией соответ­ственно. Дендриты клеток с on-центром разветвляются в подуровне а, с off-центром в подуровне G внутреннего сетчатого слоя. Цветовой канал связан с красным, зеле­ным и синим типом on/off-ганглионарных клеток. Если красный и зеленый тип ганглионарных on/off-клеток относится к карликовому пути, то синий тип не относит­ся к последнему. On/off-ответы ганглионарных клеток определяются специальными контактами колбочковых биполяров и расположением ганглионарных клеток в соответствующем подуровне внутреннего сетчатого слоя (см. рис. 168, В).

Нейроглия. Три типа глиальных клеток найдено в сетчатке человека: клетки Мюллера, астроглия и микроглия, описанные 100 лет назад Кахалем. Через все слои сетчатки проходят радиально главные глиальные клет­ки, которые были впервые описаны Мюллером. Они длинные, узкие. Их уд­линенное ядро лежит на уровне ядер биполярных нейроцитов. Многочис­ленные длинные микроворсинки, идущие от наружных концов мюллеровых клеток, спускаются ниже уровня синаптических комплексов и прохо­дят между внутренними сегментами фоторецепторов, в наружном ядерном слое, а внутренние отростки образуют внутренний пограничный слой.

Пигментный слой, эпителий (stratum pigmentosum) - наружный слой сетчатки - состоит из призматических полигональных, пигментных кле­ток - пигментоцитов. Своими основаниями клетки располагаются на ба-зальной мембране, которая входит в состав мембраны Бруха сосудистой оболочки. Общее количество пигментных клеток, содержащих коричневые гранулы меланина, варьирует от 4 до 6 млн. В центре желтого пятна они более высокие, а на периферии уплощаются, становятся шире. Апикальные мембраны пигментных клеток контактируют непосредственно с дистальной частью наружных сегментов фоторецепторов сетчатки. Между ними имеется пространство. Апикальная поверхность пигментоцитов имеет два типа микроворсинок: длинные микроворсинки, которые располагаются между на­ружными сегментами фоторецепторов, и короткие микроворсинки, кото­рые соединяются с концами наружных сегментов фоторецепторов. Один пигментоцит контактирует с 30-45 наружными сегментами фоторецепторов, а вокруг одного наружного сегмента палочек обнаруживается 3-7 отростков пигментоцитов, содержащих меланосомы, фагосомы и органеллы общего значения. В то же время вокруг наружного сегмента колбочки 30-40 отростков, которые длиннее и не содержат органелл, за исключением меланосом. Фагосомы образуются в процессе фагоцитоза дисков наружных сегментов фоторецепторов. Считают, что пигментоциты являются разновид­ностью специализированных макрофагов ЦНС. Наличие меланосом обуслов­ливает поглощение 85-90 % света, попадающего в глаз. Под воздействием света меланосомы перемещаются в апикальные отростки пигментоцитов, а в темноте меланосомы возвращаются в цитоплазму. Это перемещение про­исходит с помощью микрофиламентов при участии гормона меланотропина. Пигментный эпителий существенно влияет на электрическую реакцию глаза, являясь источником постоянного потенциала глаза. Располагаясь внесетчатки, он тесно взаимодействует с ней, выполняя ряд важных функций: оптическую защиту и экранирование от света; транспорт метаболи­тов, солей, кислорода и т.д. из сосудистой оболочки к фоторецепторам и обратно, фагоцитарную, обеспечивающую уборку отработанных дисков на­ружных сегментов фоторецепторов и доставку материала для постоянного обновления фоторецепторной мембраны; участие в регуляции ионного состава в субретинальном пространстве.

В пигментном эпителии велика опасность развития темновых и фотоокислитель­ных деструктивных процессов. Все ферментативные и неферментативные звенья антиокислительной защиты присутствуют в клетках пигментного эпителия: пигмен-тоциты участвуют в защитных реакциях, тормозящих перекисное окисление липидов с помощью ферментов микропероксисом и функциональ­ных групп меланосом. Например, в них найдена высокая активность пероксидазы, как селензависимой, так и селеннезависимой, и высокое содержание а-токоферола. Меланосомы в клетках пигментного эпителия, обладающие выраженным антиоксидантным свойством, служат специфическими участниками системы антиоксидантной защиты. Они эффективно связывают прооксидантные зоны (ионы железа) и не менее эффективно взаимодействуют с активными формами кислорода.

На внутренней поверхности сетчатки у заднего конца оптической оси глаза имеется округлое или овальное желтое пятно диаметром около 2 мм. Слегка углубленный центр этого образования называется центральной ям­кой (fovea centralis). Центральная ямка - место наилучшего вос­приятия зрительных раздражений. В этой области внутренний ядерный и ганглиозный слои резко истончаются, а несколько утолщенный наружный ядерный слой представлен главным образом телами колбочковых нейросен-сорных клеток.

Регенерация сетчатки. Процессы физиологической регенерации палочковых и колбочковых нейронов происходят в течение всей жизни. Ежесуточно *в каждой палочковой клетке ночью или в каждой колбочковой клетке днем формируется около 80 мембранных дисков. Процесс обновления каждой палочковой клетки длится 9-12 дней.

В одном пигментоците ежесуточно фагоцитируется около 2-4 тыс. дисков, об­разуется 60-120 фагосом, каждая из которых содержит 30-40 дисков.

Таким образом, пигментоциты обладают исключительно высокой фагоцитарной активностью, которая повышается при напряжении функции глаза в 10-20 раз и более.

Выявлены циркадные ритмы утилизации дисков: отделение и фагоцитоз сегментов палочковых клеток происходят обычно утром, а колбочковых ночью.

В механизмах отделения отработанных дисков важная роль принадлежит рети­нолу (витамин А), который в больших концентрациях накапливается в наружных сегментах палочковых клеток на свету и, обладая сильно выраженными мембранолитическими свойствами, стимулирует указанный выше процесс. Циклические нук-леотиды (цАМФ) тормозят скорость деструкции дисков и их фагоцитоз. В темноте, когда цАМФ много, скорость фагоцитоза невелика, а на свету, когда уровень цАМФ снижен, она возрастает.

Васкуляризация. Ветви глазничной артерии формируют две группы разветвлений: одна образует ретинальную сосудистую систему сетчатки, васкуляризующую сетчатку и часть зрительного нерва; вторая образует цилиарную систему, снабжающую кровью сосудистую оболочку, цилиарное тело, радужку и склеру. Лимфатические капилляры располагаются только в склеральной конъюнктиве, в других участках глаза они не найдены.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: