Вопросы к главе 12

  1. Как определяется дифференциальная энтропия непрерывной случайной величины? Разновидности энтропии непрерывной случайной величины.
  2. Чему равна максимальная дифференциальная энтропия, если случайная величина ограничена в объёме, при каком законе распределения она максимальна?
  3. Чему равна максимальная дифференциальная энтропия, если случайная величина не ограничена в объёме?
  4. Как влияет математическое ожидание случайной величины на её энтропию?

Дифференциальная энтропия — средняя информация непрерывного источника. Определяется как

бит

где — плотность распределения сигнала непрерывного источника как случайной величины.

Условная дифференциальная энтропия для величины при заданной величине определяется следующей формулой:

бит

Безусловная и условная дифференциальные энтропии могут быть как положительными, так и отрицательными величинами, а также могут быть равны бесконечности.

Для дифференциальной энтропии справедливы равенства, аналогичные для энтропии дискретного источника:

(для независимых источников — равенство)

Дифференциальная энтропия распределений с определенной фиксированной дисперсией максимальна в случае гауссова распределения плотности вероятности сигнала непрерывного источника как случайной величины и равна

бит

Для равномерного распределения:

бит

Для распределения Лапласа

бит

Литература

  • Вернер М. 8.1 Дифференциальная энтропия // Основы кодирования = Information und Codierung / пер. Д.К. Зигангирова. — ЗАО «РИЦ „Техносфера“», 2004. — С. 109—114. — (Мир программирования). — 3 000 экз. —
Глава 13. Энтропия и производительность эргодического источника непрерывного сигнала назад | оглавление | вперёд  

Сигнал, отображающий непрерывное сообщение, можно рассматривать как некоторый эргодический случайный процесс, спектр которого ограничен полосой частот. В соответствии с теоремой Котельникова для описания этого процесса длительностью T требуется отсчётов, где – интервал Котельникова. Так как сигнал с ограниченным спектром полностью характеризуется своими отсчётными значениями, то знание значений сигнала между отсчётами не увеличивают наших знаний о сигнале. Следовательно, при определении энтропии непрерывного сигнала достаточно учитывать только его отсчётные значения.

Известно, что энтропия обладает свойством аддитивности. Так, если у какого‑то дискретного сигнала длительностью t энтропия равна H(x), то энтропия сигнала, составленного из N элементов, будет равна N×H(x). Аналогичным образом можно вычислить энтропию непрерывного сигнала длительностью T, которая будет равна

,

где H 1 (x) – энтропия одного сечения случайного сигнала, определяемая по формуле (28) через одномерную плотность вероятности. Размерность энтропии H 1 (x) – бит на один отсчёт случайного сигнала (одно сечение случайного процесса).

Производительность непрерывного случайного процесса будет равна

или

бит/с. (36)

Таким образом, производительность эргодического источника непрерывного сигнала полностью определяется энтропией одного отсчета и удвоенной полосой частот этого сигнала.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: