Совместная энтропия двух непрерывных случайных величин равна

Условная энтропия случайной величины y относительно случайной величины x.

, или

. (32)

Совместная энтропия двух непрерывных случайных величин равна

, или . (33)

Для независимых x и y H(x,y)=H(x)+H(y).

Для совместной дифференциальной энтропии непрерывной случайной величины справедливы соотношения (17) и (18).

3. Взаимная информация I(x,y), содержащаяся в двух непрерывных сигналах x и y, определяется формулой (16).

Для независимых x и y взаимная информация I(x,y)=0.

4. Если случайная величина ограничена в объёме V=b-a, то её дифференциальная энтропия максимальна при равномерном закона распределения этой величины (рис. 10).

. (34)

Так как эта величина зависит только от разности (b-a), а не от абсолютных величин b и a, следовательно, Hmax(x) не зависит от математического ожидания случайной величины x.

5. Если случайная величина не ограничена в объёме (т.е. может изменяться в пределах от -¥ до +¥), а ограничена только по мощности, то дифференциальная энтропия максимальна в случае гауссовского закона распределения этой величины. Определим этот максимум.

В соответствии с (31)

;

.

Отсюда

.

Но математическое ожидание m{(x-a2)}=s2, отсюда получаем

,

или окончательно

. (35)

Cледовательно, энтропия зависит только от мощности s2.

Эта очень важная формула будет использоваться позднее для определения пропускной способности непрерывного канала связи.

Заметим, что, как и ранее, Hmax(x) не зависит от математического ожидания a случайной величины x. Это важное свойство энтропии. Оно объясняется тем, что математическое ожидание является не случайной величиной.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: