Растяжение-сжатие

Простейшая элементарная деформация.

Простейшей элементарной деформацией является относительное удлинение некоторого элемента:

(e)=(l2-l1)/l1
где
l2 — длина элемента после деформации;
l1 — исходная длина этого элемента.

Растяжение-сжатие.

Растяжение-сжатие — в сопротивлении материалов — вид продольной деформации стержня или бруса, возникающий в том случае, если нагрузка к нему прикладывается по его продольной оси (равнодействующая сил, воздействующих на него, нормальна поперечному сечению стержня и проходит через его центр масс).

Называется также одноосным или линейным напряжённым состоянием. Является одним из основных видов напряжённого состояния параллелепипеда. Может быть также двух- и трёх-осным. Вызывается как силами, приложенными к концам стержня, так и силами, распределёнными по объёму (силы инерции и тяготения).

Растяжение вызывает удлинение стержня (также возможен разрыв и остаточная деформация), сжатие вызывает укорочение стержня (возможна потеря устойчивости и возникновение продольного изгиба).

В поперечных сечениях бруса возникает один внутренний силовой фактор — нормальная сила. Если растягивающая или сжимающая сила параллельна продольной оси бруса, но не проходит через неё, то стержень испытывает т. н. внецентренное растяжение (сжатие). В этом случае за счёт эксцентриситета приложения нагрузки в стержне кроме растягивающих (сжимающих) напряжений возникают ещё и изгибные напряжения.

Напряжение вдоль оси прямо пропорционально растягивающей или сжимающей силе и обратно пропорционально площади поперечного сечения. При упругой деформации между напряжением и относительной деформацией определяется законом Гука, при этом поперечные относительные деформации выводятся из продольных путём умножения их на коэффициент Пуассона. Пластическая деформация, предшествующая разрушению части материала, описывается нелинейными законами.

Зако́н Гу́ка — уравнение теории упругости, связывающее напряжение и деформацию упругой среды. Открыт в 1660 году английским учёным Робертом Гуком (Хуком) (англ. Robert Hooke). Поскольку закон Гука записывается для малых напряжений и деформаций, он имеет вид простой пропорциональности.

В словесной форме закон звучит следующим образом:

Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь F — сила натяжения стержня, Δ l — абсолютное удлинение (сжатие) стержня, а k называется коэффициентом упругости (или жёсткости).

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня.

Модуль Юнга (модуль упругости) — коэффициент, характеризующий сопротивление материала растяжению/сжатию при упругой деформации. Назван в честь английского физика XIX века Томаса Юнга. В динамических задачах механики модуль Юнга рассматривается в более общем смысле — как функционал среды и процесса.

Модуль Юнга рассчитывается следующим образом:

где:

  • E — модуль упругости, измеряемый в паскалях
  • F — сила в ньютонах,
  • S — площадь поверхности, по которой распределено действие силы,
  • l — длина деформируемого стержня,
  • x — модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина l).

Коэффициент Пуассона (обозначается как ν или μ) характеризует упругие свойства материала. При приложении к телу растягивающего усилия оно начинает удлиняться (то есть продольная длина увеличивается), а поперечное сечение уменьшается. Коэффициент Пуассона показывает, во сколько раз изменяется поперечное сечение деформируемого тела при его растяжении или сжатии. Для абсолютно хрупкого материала коэффициент Пуассона равен 0, для абсолютно упругого — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он примерно равен 0,5. (Измеряется в относительных единицах: мм/мм, м/м).

Известно,что величина растягивающей силы F и величина удлинения Δℓ образцов из одного материала зависят от их размеров. Чтобы можно было сравнить результаты испытаний образцов различных размеров,изготовленных из одинаковых материалов,диаграмму растяжения перестраивают в координатахσ = F/Aи ε = Δℓ/ℓ, где А – первоначальная площадь сечения образцов; – первоначальная длина рабочей части образца.Эту диаграммуσ = f(ε) называют диаграммой напряжений или условной диаграммой растяжения,вид которой почти не зависит от абсолютных размеров используемых при испытании образцов, а определяется свойствами материала. Типовая диаграмма напряжений при растяжении образцов из пластичных материалов(рис. 1, в) характеризуется следующими участками.Участок длиной ОА до некоторого напряженияσpr,называемого пределом пропорциональности,представляет прямую линию.На этом участке справедлив закон Гука и величина абсолютной деформацииΔℓпрямо пропорциональна растягивающему усилию F,а относительная деформацияε –напряжениюσ.

После достижения предела пропорциональности σpr деформацииε растут не прямо пропорционально напряжениям σ, а быстрее. Начиная с некоторой точки В, лежащей уже на криволинейном участке диаграммы,замечено появление незначительных(0,05%) остаточных деформаций,до точки В деформации еще упругие.Точке В соответствует предел упругости материала σe– то наибольшее напряжение,до которого в материале появляются только упругие деформации. Предел упругости практически совпадает с пределом пропорциональности и эти величины обычно не разграничиваются.Например, для стали Ст3 предел пропорциональностиσpr ≈ 210 МПа, а предел упругости σe ≈ 220 МПа.

На рисунке 2 приведена диаграмма напряжений при растяжении для данного материала.



Рисунок 2 – Диаграмма напряжений при растяжении

где - предел пропорциональности, - текучести, -прочности.

Сдвиг — в сопротивлении материалов — вид продольной деформации бруса, возникающий в том случае, если сила прикладывается касательно его поверхности (при этом нижняя часть бруска закреплена неподвижно).

Изгиб.

Изгиб — вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев. Изгиб связан с возникновением в поперечных сечениях бруса изгибающих моментов. Прямой изгиб возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, называется косым.

Если при прямом или косом изгибе в поперечном сечении бруса действует только изгибающий момент, то соответственно имеется чистый прямой или чистый косой изгиб. Если в поперечном сечение действует также и поперечная сила, то имеется поперечный прямой или поперечный косой изгиб.

Часто термин «прямой» в названии прямого чистого и прямого поперечного изгиба не употребляют и их называют соответственно чистым изгибом и поперечным изгибом.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: