Законы идеальных растворов

При растворении вещества одновременно проходят два процесса:

1. Дробление вещества до молекул или ионов. Этот процесс требует затраты энергии, поэтому сопровождается поглощением тепла, расходуемого на разрушение кристаллической решетки растворяемого вещества или диссоциацию его молекул на ионы. Поэтому , процесс эндотермический.

2. Взаимодействие растворенных молекул или ионов с молекулами растворителя – сольватация (гидратация, если растворитель - вода). Этот процесс сопровождается выделением тепла () и называется экзотермическим.

В целом теплота растворения складывается

и может быть как отрицательной, так и положительной, в зависимости от преобладания составляющих процессов.

Растворимость (), определяемая как концентрация насыщенного раствора (), равняется константе равновесия процесса образования насыщенного раствора при данной температуре

. (2.15)

Поскольку растворение – это равновесный процесс, то зависимость растворимости от температуры при постоянном давлении подчиняется уравнению изобары

.

Если образование раствора сопровождается выделением тепла (), то растворимость вещества с повышением температуры будет уменьшаться. Если же растворение эндотермическое, т.е. идет с поглощением тепла, то при увеличении температуры растворимость возрастает.

Идеальными растворами считаются растворы, соответствующие двум требованиям:

1. Размеры молекул всех компонентов раствора нулевые.

2. Силы взаимодействия между всеми компонентами раствора отсутствуют.

Из реальных растворов таким требованиям соответствуют только разбавленные и совершенные растворы.

Разбавленными называют растворы, в которых концентрация растворенного вещества приближается к нулю.

Совершенными называются растворы, образованные веществами с очень близкими физико–химическими свойствами.

Закон Рауля. Основным законом идеальных растворов является закон Рауля.

,

где - мольная доля растворителя в растворе; - давление насыщенного пара растворителя над чистым растворителем, ; - давление насыщенного пара растворителя над раствором, .

В случае бинарного раствора

,

где - мольная доля растворенного вещества в растворе.

Чрезвычайно важными являются следствия из закона Рауля.

1. Температура кипения раствора всегда выше температуры кипения чистого растворителя при одинаковом внешнем давлении.

,

где - повышение температуры кипения раствора относительно чистого растворителя, ; и -соответственно температура кипения раствора и чистого растворителя, ; - моляльная концентрация растворенного вещества, ; - эбулиоскопическая постоянная растворителя, .

Эбулиоскопическая постоянная показывает, на сколько градусов повышается температура кипения раствора на каждый моль растворенного вещества. Она не зависит от природы и концентрации растворенного вещества, а зависит только от природы растворителя.

,

где - температура кипения растворителя, К; - универсальная газовая постоянная, 8,314 Дж/моль∙К; - удельная теплота испарения растворителя, Дж/г, 1000 – коэффициент перехода от г в кг.

2. Температура замерзания раствора всегда ниже температуры замерзания растворителя при одинаковом внешнем давлении.

,

где - снижение температуры кристаллизации раствора относительно чистого растворителя, К; и -соответственно температура кристаллизации раствора и чистого растворителя, К; - моляльная концентрация растворенного вещества, моль/кг; - криоскопическая постоянная растворителя, кг∙К/моль.

Криоскопическая постоянная не зависит от природы и концентрации растворенного вещества, а определяется только свойствами растворителя и может быть рассчитана

,

где - температура кристаллизации растворителя, К; - универсальная газовая постоянная, 8,314 Дж/моль∙К; - удельная теплота кристаллизации растворителя, Дж/г; 1000 – коэффициент перехода от г в кг.

Если растворенное вещество является электролитом, то в указанные законы необходимо ввести изотонический коэффициент (i).

,

где - степень диссоциации растворенного вещества в растворе; -число ионов, образующихся при диссоциации молекулы растворенного вещества.

; ; .

Второе следствие из закона Рауля находит применение для экспериментального определения молярной массы растворенного вещества неэлектролита.

,

где - понижение температуры кристаллизации раствора по отношению к чистому растворителю, К; - криоскопическая постоянная растворителя, К∙кг/моль; - масса растворенного вещества, г, - масса растворителя, кг; - молярная масса растворенного вещества, г/моль.

Закон Генри. Растворимость газов в жидких растворителях (не сталях) описывается законом Генри: при постоянной температуре растворимость газа в данном растворителе прямо пропорциональна парциальному давлению данного газа над растворителем.

,

где - растворимость i –го газа в жидкости, кг/м3; - парциальное давление i –го газа над жидкостью, Па; - коэффициент Генри, кг/м3∙Па.

Коэффициент Генри (константа Генри) зависит от природы газа и жидкости, а также от температуры. Так как при растворении газа в жидкости отсутствует процесс дробления вещества, то растворение является экзотермическим процессом взаимодействия газа с жидкостью. Поскольку , то растворимость газов в жидкостях при повышении температуры уменьшается (см. уравнение изобары).

Закон Сивертса. В случае растворимости двухатомных газов в жидких металлах (расплавах) имеет место процесс дробления (атомизации) молекул газов. Поэтому для таких растворов и растворимость двухатомных газов в расплавах металлов при увеличении температуры увеличивается. Влияние давления на растворимость газа в расплавах металла описывается законом Сивертса: при постоянной температуре растворимость двухатомных газов в расплавленных металлах прямо пропорциональна квадратному корню из парциального давления данного газа над растворителем.

,

где - растворимость i –го газа в расплаве металла, кг/м3; - парциальное давление i –го газа над расплавом, Па; - коэффициент Сивертса, кг/м3∙Па1/2.

Закон распределения Нернста – Шилова. Если в системе, состоящей из двух несмешивающихся жидкостей, находится третье вещество, то оно распределяется между этими жидкостями, согласно закона распределения: отношение концентраций третьего компонента в двух несмешивающихся жидкостях есть величина постоянная, не зависящая от относительных количеств жидкостей и от количества третьего вещества. Она определяется природой растворителей, растворенного вещества и температурой.

,

где -константа распределения; и - концентрация компонента в первой и второй несмешивающихся жидкостях соответственно.

Этот закон находит широкое применение в процессах очистки экстракцией сталей, сплавов и в получении сверхчистых веществ.

,

где - соответственно начальное и конечное после - кратных экстракций содержание третьего вещества в первой жидкости; - объём жидкости, из которой производится извлечение третьего компонента; - объём жидкости, которой проводят извлечение третьего компонента из первой жидкости; - кратность обработки жидкости объёма жидкостью объёмом .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: