Факторы, обеспечивающие величину кровяного давления

I фактор – работа сердца. Сердечная деятельность обеспечивает количество крови, поступающее в течение 1 минуты в сосудистую систему, т.е. минутный объем кровообращения. Он составляет у человека 4-5 л (Q=МОК). Этого количества крови вполне достаточно, чтобы в состоянии покоя обеспечить все потребности организма: транспорт к тканям кислорода и удаление углекислоты, обмен веществ в тканях, определенный уровень деятельности органов выделения, благодаря которому поддерживается постоянство минерального состава внутренней среды, терморегуляция. Величина минутного объема кровообращения в покое отличается большим постоянством и является одной из биологических констант организма. Изменение минутного объема кровообращения может наблюдаться при переливании крови, вследствте которого кровяное давление повышается. При кровопотере, кровопускании происходит уменьшение объема циркулирующей крови, в результате чего артериальное давление падает.

С другой стороны, при выполнении большой физической нагрузке минутный объем кровообращения достигает 30-40 л, так как мышечная работа ведет к опорожнению кровяных депо и сосудов лимфатической системы (В.В. Петровский, 1960), что значительно увеличивает массу циркулирующей крови, ударный объем сердца и частоту сердечных сокращений. В результате минутный объем кровообращения возрастает в 8-10 раз. Однако у здорового организма артериальное давление при этом повышается незначительно, всего на 20-40 мм рт.ст.

Отсутствие выраженного повышения артериального давления при значительном росте минутного объема объясняется снижением периферического сопротивления кровеносных сосудов и деятельностью депо крови.

II фактор – вязкость крови. Согласно основным законам гемодинамики, сопротивление току жидкости тем больше, чем больше ее вязкость (вязкость крови в 5 раз выше, чем воды, вязкость которой принято считать за 1), чем длиннее трубка, по которой течет жидкость, и чем меньше ее просвет. Известно, что кровь движется в кровеносных сосудах благодаря энергии, которую сообщает ей сердце при своем сокращении. Во время систолы желудочков приток крови в аорту и в легочную артерию становится больше, чем ее отток из них и давление крови в этих сосудах повышается. Часть этого давления затрачивается на преодоление трения. Различают внешнее трение – это трение форменных элементов крови, например, эритроцитов, о стенки кровеносных сосудов (особенно оно велико в прекапиллярах и капиллярах), и внутреннее трение частиц друг о друга. В случае повышения вязкости крови возрастает трение крови о стенки сосудов и взаимное трение форменных элементов друг о друга. Сгущение крови увеличивает внешнее и внутреннее трение, повышает сопротивление кровотоку и приводит в подъему кровяного давления.

III фактор – периферическое сопротивление сосудов. Так как вязкость крови не подвержена быстрым изменениям, то основное значение в регуляции кровообращения принадлежит показателю периферического сопротивления, обусловленному трением крови о стенки сосудов. Трение крови будет тем больше, чем больше общая площадь соприкосновения ее со стенками сосудов. Наибольшая площадь соприкосновения между кровью и сосудами приходится на тонкие кровеносные сосуды – артериолы и капилляры. Наибольшим периферическим сопротивлением обладают артериолы, что связано с наличием гладкомышечных жомов, поэтому артериальное давление при переходе крови из артерий в артериолы падает с 120 до 70 мм рт. ст. В капиллярах давление снижается до 30-40 мм рт. ст., что объясняется значительным увеличением их суммарного просвета, а следовательно – сопротивления

Изменение кровяного давления вдоль сосудистого русла (по Фолькову Б., 1967)

Отделы сосудистого русла Величина кровяного давления
Артерии 120/80 мм рт. ст.
Артериолы 80/60 мм рт. ст.
Капилляры 30/10 мм рт. ст.
Вены, расположенные далеко от сердца 5-10 мм рт. ст.
Вены, близко расположенные от сердца На 4-7 мм рт. ст. ниже атмосферного (отрицательное)

Из приведенных данных видно, что первое значительное падение кровяного давления отмечается на участке артериол, т.е. прекапиллярном отделе сосудистой системы. Согласно функциональной классификации Б. Фолькова, сосуды, оказывающие сопротивление току крови, обозначаются как резистивные, или сосуды сопротивления. Артериолы являются наиболее активными в вазомоторном (лат. vas – сосуды, motor – двигатель) отношении. Наиболее существенные изменения периферического сопротивления сосудистого русла обуславливаются:

1) изменениями просвета артериол – при значительном повышении их тонуса, сопротивление току крови возрастает, кровяное давление повышается выше нормы во всей сосудистой системе. Возникает гипертония. Повышение давления в отдельных участках сосудистой системы, например, в сосудах малого круга кровообращения или сосудах брюшной полости, называется гипертензией. Гипертензия, как правило, возникает в результате местных повышений сопротивления кровотоку. Значительные и стойкие гипертензии могут возникать только вследствие нарушения нейрогуморальной регуляции сосудистого тонуса.

2) Скорость течения крови по сосудам – чем больше скорость, тем больше сопротивление. При повышении сопротивления сохранение минутного объема крови возможно только при условии повышения в них линейной скорости течения крови. Это же дополнительно увеличивает сопротивление кровеносных сосудов. При понижении сосудистого тонуса линейная скорость кровотока уменьшается, трение струи крови о стенки сосудов становится меньше. Снижается периферическое сопротивление сосудистой системы, и поддержание минутного объема кровообращения обеспечивается при более низком артериальном давлении.

3) В организме благодаря регуляции сосудистого тонуса обеспечивается относительное постоянство артериального давления. Например, при уменьшении минутного объема кровообращения (при ослаблении сердечной деятельности или в результате кровопотери) падение артериального давления не происходит, так как повышается сосудистый тонус, R возрастает, а Р, как произведение Q на R, остается постоянным. Наоборот, при физической или умственной работе, которые сопровождаются увеличением минутного объема крови (за счет увеличения ЧСС), происходит регуляторное снижение сосудистого тонуса, в основном в прекапиллярном отделе, благодаря чему суммарный просвет артериол увеличивается и периферическое сопротивление сосудистого бассейна падает. Таким образом, колебания сосудистого тонуса активно изменяют сопротивление сосудистого русла и, тем самым, обеспечивают относительное постоянство артериального давления.

4 фактор – эластичность сосудистой стенки: чем более эластична сосудистая стенка, тем давление крови ниже, и наоборот.

5 фактор – объем циркулирующей крови (ОЦК) – так, кровопотеря снижает кровяное давление, наоборот, переливание больших количеств крови повышает кровяное давление.

Таким образом, артериальное давление зависит от многих факторов, которые могут быть сгруппированы следующим образом:

1. Факторы, связанные с работой самого сердца (сила и частота сердечных сокращений), что обеспечивает приток крови в артериальную систему.

2. Факторы, связанные с состоянием сосудистой системы – тонус стенки сосуда, эластичность стенки сосуда, состояние поверхности сосудистой стенки.

3. Факторы, связанные с состоянием крови, циркулирующей по сосудистой системе – её вязкость, количество (ОЦК).

КОЛЕБАНИЯ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ. ОЦЕНКА СИСТОЛИЧЕСКОГО, ДИАСТОЛИЧЕСКОГО И ПУЛЬСОВОГО ДАВЛЕНИЙ.

Кровяное давление в артериях совершает постоянные непрерывные колебания от некоторого среднего уровня. При прямой регистрации артериального давления на кимограмме различают 3 рода волн: 1) систолические волны I порядка, 2) дыхательные волны II порядка, 3) сосудистые волны III порядка.

Волны I порядка – обусловлены систолой желудочков сердца. Во время изгнания крови из желудочков давление в аорте и легочной артерии повышается и достигает максимума соответственно 140 и 40 мм рт. ст. Это максимальное систолическое давление ( СД). Во время диастолы, когда кровь в артериальную систему из сердца не поступает, а проходит лишь отток крови из крупных артерий к капиллярам – давление в них падает до минимума, и это давление называют минимальным, или диастолическим (ДД). Его величина в значительной мере зависит от просвета (тонуса) кровеносных сосудов и равна 60-80 мм рт. ст. Разность между систолическим и диастолическим давлением называется пульсовым (ПД), и обеспечивает на кимограмме появление ситолической волны, - равно 30-40 мм рт. ст. Пульсовое давление прямо пропорционально ударному объему сердца и говорит о силе сердечных сокращений: чем больше крови выбросит сердце в систолу, тем больше будет величина пульсового давления. Между систолическим и диастолическим давлениями существует определенное количественное соотношение: максимальному давлению соответствует минимальное давление. Оно определяется делением максимального давления пополам и прибавлением 10 (например, СД=120 мм рт. ст., тогда ДД=120:2+10=70 мм рт. ст.).

Наибольшее значение пульсового давления отмечается в сосудах, расположенных ближе к сердцу – в аорте, и крупных артериях. В мелких артериях разница между систолическим и диастолическим давлениями сглаживается, а в артериолах и капиллярах давление постоянно и не изменяется во время систолы и диастолы. Это важно для стабилизации обменных процессов, происходящих между кровью, протекающей через капилляры, и тканями, их окружающими. Количество волн I порядка соответствует ЧСС.

Волны II порядка – дыхательные, отражают изменение артериального давления, связанное с дыхательными движениями. Их число соответствует количеству дыхательных движений. Каждая волна II порядка включает несколько волн I порядка. Механизм их возникновения сложен: при вдохе создаются условия для поступления крови из большого круга кровообращения – в малый, благодаря увеличению емкости легочных сосудов и некоторому снижению их сопротивления кровотоку, увеличению поступления крови из правого желудочка в легкие. Этому также способствует разница давлений между сосудами брюшной полости и грудной клетки, которое возникает в результате повышения отрицательного давления в плевральной полости, с одной стороны, и опускания диафрагмы и «вдавливания» ею крови из венозных сосудов кишечника и печени – с другой. Все это создает условия для депонирования крови в сосудах легких и уменьшения ее выхода из легких в левую половину сердца. Поэтому на высоте вдоха приток крови к сердцу уменьшается и кровяное давление понижается. К концу вдоха кровяное давление повышается.

Описанные факторы относятся к механическим. Однако, в формировании волн II порядка имеют значение нервные факторы: при изменении активности дыхательного центра, наступающем при вдохе, происходит повышение активности сосудодвигательного центра, повышая тонус сосудов большого круга кровообращения. Колебания объема кровотока могут также вторично вызвать изменение кровяного давления, активизируя сосудистые рефлексогенные зоны. Например, рефлекс Бейнбриджа при изменении кровотока в правом предсердии.

Волны III порядка (воны Геринга-Траубе) – это еще более медленные повышения и понижения давления, каждое из которых охватывает несколько дыхательных волн II порядка. Они обусловлены периодическими изменениями тонуса сосудодвигательных центров. Наблюдаются чаще всего при недостаточном снабжении мозга кислородом (высотная гипоксия), после кровопотери или отравления некоторыми ядами.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: