Демодуляция квадратурного сигнала

u1n:= sn·cos(2·p·f0·n·Dt) 'Раздельная синхронная демодуляция сигналов an и bn. Графики

u2n:= sn·sin(2·p·f0·n·Dt) 'сигналов u2n и bn смешены на -2 для представления в одном поле.

U1:= CFFT(u1) U2:= CFFT(u2) 'Спектры сигналов, БПФ.

M:= 50/Df m:= M.. N+1-M U1m:= 0 U2m:= 0 'Удаление высоких частот (после 50 Гц).

u3:= ICFFT(U1) u4:= ICFFT(U2) 'ОБПФ оставшихся низких частот спектра. На графиках

'амплитуды сигналов u3n и u4n увеличены в 2 раза

'для сопоставления c исходными сигналами an и bn.

15.3. Внутриимпульсная частотная модуляция [1].

Сигнал с внутриимпульсной частотной модуляцией – это радиоимпульс, высокочастотное заполнение которого имеет переменную частоту.

Рис. 15.3.1. ЛЧМ – сигнал.

ЛЧМ – сигналы. Если закон изменения мгновенной частоты заполнения имеет линейный характер, то такие сигналы носят название ЛЧМ – сигналов (линейная частотная модуляция). Наиболее широкое применение они получили в радиолокации. Пример ЛЧМ – сигнала с огибающей прямоугольной формы приведен на рис. 15.3.1.

ЛЧМ – сигналы имеют одно замечательное свойство. Если сигнал подать на частотно-зависимую линию задержки, время задержки сигнала которой велико на малых частотах (в начальной части ЛЧМ – сигнала) и уменьшается по мере нарастания частоты в ЛЧМ – сигнале, то на выходе такой линии происходит "сжатие" сигнала в один период высокочастотного колебания путем суммирования амплитудных значений всех периодов сигнала. При этом происходит увеличение амплитуды выходного сигнала и уменьшение статистических шумов, так как суммируемые одновременно по этим же периодам шумы не коррелированны.

Для модели радиоимпульса с прямоугольной огибающей примем его длительность равной tи, а точку t = 0 поместим в центр радиоимпульса. Допустим также, что частота заполнения линейно нарастает от начала импульса к его концу со скоростью m (с-2), при этом:

w(t) = wo + mt. (15.3.1)

Девиация частоты за время длительности импульса и полная фаза сигнала:

Dw = m×tи. (15.3.2)

y(t) = wot + m t2/2. (15.3.3)

Уравнение ЛЧМ – сигнала:

u(t) = (15.3.4)

Спектр прямоугольного ЛЧМ – сигнала вычисляется через преобразование Фурье. Девиация частоты за время длительности импульса по сравнению с несущей частотой обычно мала (Dw << wo) и форма спектра зависит от так называемой базы импульса:

В = Dw×tи = m×tи2. (15.3.5)

На рис. 15.3.2 приведен пример формы спектральной плотности ЛЧМ – сигнала при малом значении базы в области несущей частоты сигнала.

Рис.15.3.2. Спектр ЛЧМ- сигнала. Рис. 15.3.3. Спектр при B>>1.

На практике значение базы сигналов обычно много больше 1. Увеличение базы сопровождается расширением полосы спектра Dw, при этом в пределах этой полосы модуль спектральной плотности практически постоянен и равен Um× . Пример спектра приведен на рис. 15.3.3.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: