Ударная прочность полимеров

Разнообразные способы механического воздействия, приводящие к разрушению полимерного материала, можно отнести к трем типичным случаям:

ударные воздействия,

длительные воздействия при постоянной нагрузке,

периодические воздействия.

Ударное воздействие означает деформирование тела с большой скоростью. Если эта скорость превышает скорость распространения упругой деформации (скорость звука), то образец разрушается в месте приложения нагрузки, если не превышает, то образец разрушается по всему объему по механизму хрупкого разрушения. Пластическая деформация до разрушения образца не успевает развиться в сколько-нибудь значительной степени.

Сопротивление полимеров ударным нагрузкам характеризуется так называемой ударной вязкостью, величина которой, выражаемая в Дж/м2, численно равна работе разрушения ∆A, отнесенной к единице площади поперечного сечения образца S:

где а - ударная вязкость; S = b·h (b - ширина, h - толщина образца). Поскольку работа разрушения выражается интегралом напряжений по деформациям, то

где σр, εр - предельные напряжение и деформация образца при его разрушении, 0,5 < с < 1 - постоянная. Из (4.31) следует, что ударная вязкость определяется как прочностными (σр), так и деформационными (εр) характеристиками материала.

Ударную вязкость полимеров наиболее часто определяют, используя для разрушения образца кинетическую энергию маятника (рис. 4.17). Из схемы, приведенной на рис. 4.17, видно, что в исходном положении маятник массой M, плечом l0 обладает запасом потенциальной энергии, равной:

После разрушения образца и подъема маятника на угол Θ', энергия равна

следовательно, энергия, затраченная на разрушение, составляет:

Для расчета ударной вязкости из этой энергии необходимо вычесть кинетическую энергию разлетающихся осколков образца, которую можно рассчитать, исходя из закона сохранения импульса.

Значения ударной вязкости некоторых полимерных материалов приведены в табл. 4.4. Если сравнить ударную прочность различных полимеров с их структурой и свойствами, то можно сделать два вывода.

1. Полимеры с высокой ударной вязкостью имеют большие механические потери при низких температурах. К таким полимерам относятся полиэтилен, полиметиленоксид, поликарбонат, политетрафторэтилен, полибутадиен. Как было показано ранее, механические потери обусловлены релаксационными явлениями в полимерах, следовательно, отмеченная выше тенденция связана с частичной затратой энергии удара на перемещение сегментов макромолекул и ее рассеиванием в виде энергии в форме теплоты, выделяющейся при трении сегментов.

2. Смеси полимеров во многих случаях имеют существенно большую ударную вязкость по сравнению с гомополимерами.

Смесевые композиции широко используются на практике, наиболее известным из них является ударопрочный полистирол и ударопрочный АБС-пластик. В первом случае в жесткой матрице полистирола распределены частицы каучука размером несколько микрон, во втором - жесткой матрицей является сополимер стирола с акрилонитрилом, эластичной фазой - диеновый каучук, к которому привиты цепи сополимера акрилонитрил - стирол.

Основными причинами повышенной ударной вязкости смесевых композиций являются деформация частиц эластомера и образование вокруг них трещин серебра во время удара. На то и другое расходуется значительная часть энергии удара, что предотвращает разрушение образца.

Таблица 4.4 Ударная вязкость (по Изоду) некоторых полимерных материалов

Материал Ударная вязкость, кДж/м2
Полистирол 13-21
Ударопрочный полистирол 26-210
Сополимер акрилонитрила, бутадиена и стирола (АБС-пластик) 53-200
Поливинилхлорид 20-50
Поливинилхлорид, содержащий частицы бутадиенового каучука 500-1600
Полипропилен 20-40
Этилен-пропиленовый блок-сополимер 100-800

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: