Газовые датчики

Обнаружение различных газов в помещениях или в составе выхлопных газов осуществляется с помощью газовых датчиков. В присутствии определенных газов (например, СО2, СО, О2 или Н2) они вырабатывают электрические сигналы, которые более или менее спе­цифичны для различных веществ При этом используются различные физические и химические эффекты, которые более или менее подробно будут описаны ниже. Кроме этих простых и надежных газовых де­текторов для более ответственных применений суще­ствуют еще оптические фотометры, превосходящие га­зовые детекторы по селективности и точности. Правда, они гораздо дороже и сложнее по устройству.

Для простых применений, когда можно обойтись умеренной точностью и селективностью, применяют следующие устройства:

§ термокондуктометрические ячейки (СО2, SО2, SF6);

§ термохимические (каталитические) ячейки (СО, взрывоопасные и горючие газы),

§ полупроводниковые датчики (спирты, H2S, углевводороды, токсичные газы);

§ топливные ячейки (кислород).

Термохимическая ячейка обеспечивает часто необходимую потребность в измерении содержания горючих газов — особенно монооксида углерода (СО).

Рисунок 4.10 – Каталитическая ячейка для обнаружения горючим газов

Термохимическая ячейка (рисунок 4.10) имеет две измерительные платиновые спирали, включенные в измерительный мост, содержащий еще два постоян­ных сопротивления. Если одну из спиралей покрыть слоем активного катализатора, а вторую — слоем пас­сивного катализатора, то находящийся в атмосфере монооксид углерода (СО) будет реагировать с кис­лородом воздуха па активном катализаторе, образуя диоксид углерода (СО2). Выделяющаяся в резуль­тате этой реакции тепловая энергия вызывает повы­шение сопротивления активной спирали, а в итоге — заметный разбаланс моста. С помощью такого дат­чика можно обнаруживать весьма незначительные концентрации СО порядка 10-4 %. В атмосфере поме­щения минимальный возможный уровень измерения составляет 2·10-2 % СО. В принципе, кроме СО, с по­мощью этой ячейки могут быть обнаружены все го­рючие газы. Соответствующим подбором катализа­тора и температуры проволоки можно достигнуть оп­ределенной избирательности.

Область применения датчиков этого типа вклю­чает в себя контроль таких объектов, как гаражи, уличные туннели, стенды для испытания автомобилей и двигателей, убежища, склады, рабочие помещения, бомбоубежища гражданской обороны, коксовые уста­новки.

Полупроводниковые датчики. В самых простых и дешевых газовых датчиках ис­пользуется изменение электрического сопротивления некоторых полупроводниковых материалов, возникающее вследствие адсорбции газа. На рисунок 4.11 по­казано принципиальное устройство такого полупроводникового датчика. Он состоит из керамической основы, способной выдерживать нагрев до 100..500 °С. На этой керамической основе находятся два электрода, между которыми наносится полупроводящий оксид металла. Если газ проходит над этим активированным слоем оксида металла, то проводимость последнего изменяется. С помощью мостовой схемы это изменение проводимости преобразуется в изме­нение напряжения. Важнейшим материалом для обнаружения различных газов среди чувствительных элементов некоторых датчиков является диоксид олова SiO2 с различными легирующими добавками. Подбором легирующей добавки и рабочей температуры можно до­стигнуть определенного повышения избирательности.

Рисунок 4.11 – Измерительная ячейка полупроводникового датчика для обнаружения вредных (токсичных) газов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: