Измерение

Измерение используется повсеместно, в любой человеческой деятельности. Так, практически каждый человек в течение суток десятки раз проводит измерения, смотря на часы. Общее определение измерения таково: Измерение – это познавательный процесс, заключающийся в сравнении данной величины с некоторым ее значением, принятым за эталон сравнения.

В том числе, измерение является эмпирическим методом (методом-операцией) научного исследования. Можно выделить определенную структуру измерения, включающую следующие элементы:

1) познающий субъект, осуществляющий измерение с определенными познавательными целями;

2) средства измерения, среди которых могут быть как приборы и инструменты, сконструированные человеком, так и предметы и процессы, данные природой;

3) объект измерения, то есть измеряемая величина или свойство, к которому применима процедура сравнения;

4) способ или метод измерения, который представляет собой совокупность практических действий, операций, выполняемых с помощью измерительных приборов, и включает в себя также определенные логические и вычислительные процедуры;

5) результат измерения, который представляет собой именованное число, выражаемое с помощью соответствующих наименований или знаков.

Гносеологическое обоснование метода измерения неразрывно связано с научным пониманием соотношения качественных и количественных характеристик изучаемого объекта (явления). Хотя при помощи этого метода фиксируются только количественные характеристики, эти характеристики неразрывно связаны с качественной определенностью изучаемого объекта. Именно благодаря качественной определенности можно выделить количественные характеристики, подлежащие измерению. Единство качественной и количественной сторон изучаемого объекта означает как относительную самостоятельность этих сторон, так и их глубокую взаимосвязь. Относительная самостоятельность количественных характеристик позволяет изучить их в процессе измерения, а результаты измерения использовать для анализа качественных сторон объекта.

Проблема точности измерения также относится к гносеологическим основаниям измерения как метода эмпирического познания. Точность измерения зависит от соотношения объективных и субъективных факторов в процессе измерения.

К числу таких объективных факторов относятся:

– возможности выделения в изучаемом объекте тех или иных устойчивых количественных характеристик, что во многих случаях исследования, в частности, социальных и гуманитарных явлений и процессов затруднено, а, подчас, вообще невозможно;

– возможности измерительных средств (степень их совершенства) и условия, в которых происходит процесс измерения. В ряде случаев отыскание точного значения величины принципиально невозможно. Невозможно, например, определить траекторию электрона в атоме и т.д.

К субъективным факторам измерения относятся выбор способов измерения, организация этого процесса и целый комплекс познавательных возможностей субъекта – от квалификации экспериментатора до его умения правильно и грамотно истолковывать полученные результаты.

Наряду с прямыми измерениями в процессе научного экспериментирования широко применяется метод косвенного измерения. При косвенном измерении искомая величина определяется на основании прямых измерений других величин, связанных с первой функциональной зависимостью. По измеренным значениям массы и объема тела определяется его плотность; удельное сопротивление проводника может быть найдено по измеренным величинам сопротивления, длины и площади поперечного сечения проводника и т.д. Особенно велика роль косвенных измерений в тех случаях, когда прямое измерение в условиях объективной реальности невозможно. Например, масса любого космического объекта (естественного) определяется при помощи математических расчетов, основанных на использовании данных измерения других физических величин.

Особого внимания заслуживает разговор о шкалах измерения. Шкала – числовая система, в которой отношения между различными свойствами изучаемых явлений, процессов переведены в свойства того или иного множества, как правило – множества чисел.

Различают несколько типов шкал. Во-первых, можно выделить дискретные шкалы (в которых множество возможных значений оцениваемой величины конечно – например, оценка в баллах – 1, 2, 3, 4, 5) и непрерывные шкалы (например, масса в граммах или объем в литрах). Во-вторых, выделяют шкалы отношений, интервальные шкалы, порядковые (ранговые) шкалы и номинальные шкалы (шкалы наименований) – см. Рис., на котором отражена также мощность шкал – то есть, их разрешающая способность. Мощность шкалы можно определить как степень, уровень ее возможностей для точного описания явлений, событий, то есть, той информации, которую несут оценки в соответствующей шкале. Например, состояние пациента может оцениваться в шкале наименований: здоров – болен. Бoльшую информацию будут нести измерения состояния того же пациента в шкале интервалов или отношений: температура, артериальное давление и т.д. Всегда можно перейти от более мощной шкалы к более слабой (произведя агрегирование – сжатие – информации): например, если ввести пороговую температуру в 370 С и считать, что пациент здоров, если его температура меньше пороговой и болен в противном случае, то можно от шкалы отношений перейти к шкале наименований. Обратный переход в рассматриваемом примере невозможен – информация о том, что пациент здоров (то есть, что его температура меньше пороговой) не позволяет точно сказать, какова его температура.

ШКАЛЫ ИЗМЕРЕНИЙ

Мощность шкалы

Шкала интервалов

Шкала отношений

Шкала наименований

Шкала порядка

Рис. Классификация шкал измерений

Иногда выделяют и иные шкалы, например, шкалу разностей, в которой измеряется календарное время. Например, современное летоисчисление основано на разности текущих дат и даты Рождества Христова, принятой за нулевую. Или прежнее летоисчисление – от момента библейского сотворения Мира.

Рассмотрим свойства четырех основных типов шкал, перечисляя их в порядке убывания мощности.

Шкала отношений – самая мощная шкала. Она позволяет оценивать, во сколько раз один измеряемый объект больше (меньше) другого объекта, принимаемого за эталон, единицу. Для шкал отношений существует естественное начало отсчета (нуль). Шкалами отношений измеряются почти все физические величины – линейные размеры, площади, объемы, сила тока, мощность и т.д.

Все измерения производятся с той или иной точностью. Точность измерения – степень близости результата измерения к истинному значению измеряемой величины. Точность измерения характеризуется ошибкой измерения – разностью между измеренным и истинным значением.

Различают систематические (постоянные) ошибки (погрешности), обусловленные факторами, действующими одинаково при повторении измерений, например – неисправностью измерительного прибора, и случайные ошибки, вызванные вариациями условий измерений и/или пороговой точностью используемых инструментов измерений (например, приборов).

Из теории вероятностей известно, что при достаточно большом числе измерений случайная погрешность измерения может быть:

- больше средней квадратической ошибки (обозначаемой обычно греческой буквой сигма и равной корню квадратному из дисперсии) примерно в 32 % случаев. Соответственно, истинное значение измеряемой величины находится в интервале среднее значение плюс/минус средняя квадратическая ошибка с вероятностью 68 %;

- больше удвоенной средней квадратической ошибки только в 5 % случаев. Соответственно, истинное значение измеряемой величины находится в интервале среднее значение плюс/минус удвоенная средняя квадратическая ошибка с вероятностью 95 %;

- больше утроенной средней квадратической ошибки лишь в 0,3 % случаев. Соответственно, истинное значение измеряемой величины находится в интервале среднее значение плюс/минус утроенная средняя квадратическая ошибка с вероятностью 99,7 %.

Следовательно, крайне маловероятно, чтобы случайная погрешность измерения получилась больше утроенной средней квадратической ошибки. Поэтому в качестве диапазона истинного значения измеряемой величины обычно выбирают среднее арифметическое значение плюс/минус утроенная среднеквадратическая ошибка (так называемое ォправило трех сигма).

Необходимо подчеркнуть, что сказанное здесь о точности измерений относится только к шкалам отношений и интервалов. Для других типов шкал дело обстоит гораздо сложнее и требует от читателя изучения специальной литературы.

Шкала интервалов применяется достаточно редко и характеризуется тем, что для нее не существует естественного начала отсчета. Примером шкалы интервалов является шкала температур по Цельсию, Реомюру или Фаренгейту. Шкала Цельсия, как известно, была установлена следующим образом: за ноль была принята точка замерзания воды, за 100 градусов – точка ее кипения, и, соответственно, интервал температур между замерзанием и кипением воды поделен на 100 равных частей. Здесь уже утверждение, что температура 300С в три раза больше, чем 100С, будет неверным. В шкале интервалов сохраняется отношение длин интервалов (разностей). Можно сказать: температура в 300С отличается от температуры в 200С в два раза сильнее, чем температура в 150С отличается от температуры в 100С.

Порядковая шкала (шкала рангов) – шкала, относительно значений которой уже нельзя говорить ни о том, во сколько раз измеряемая величина больше (меньше) другой, ни на сколько она больше (меньше). Такая шкала только упорядочивает объекты, приписывая им те или иные баллы (результатом измерений является просто упорядочение объектов).

Например, так построена шкала твердости минералов Мооса: взят набор 10 эталонных минералов для определения относительной твердости методом царапанья. За 1 принят тальк, за 2 – гипс, за 3 – кальцит и так далее до 10 – алмаз. Любому минералу соответственно однозначно может быть приписана определенная твердость. Если исследуемый минерал, допустим, царапает кварц (7), но не царапает топаз (8), то соответственно его твердость будет равна 7. Аналогично построены шкалы силы ветра Бофорта и землетрясений Рихтера.

Шкалы порядка широко используются в социологии, педагогике, психологии, медицине и других науках, не столь точных, как, скажем, физика и химия. В частности, повсеместно распространенная шкала школьных отметок в баллах (пятибалльная, двенадцатибалльная и т.д.) может быть отнесена к шкале порядка.

Частным случаем порядковой шкалы является дихотомическая шкала, в которой имеются всего две упорядоченные градации – например, ォпоступил в институт, не поступил.

Шкала наименований (номинальная шкала) фактически уже не связана с понятием величина и используется только с целью отличить один объект от другого: телефонные номера, номера госрегистрации автомобилей и т.п. Результаты измерений необходимо анализировать, а для этого нередко приходится строить на их основании производные (вторичные) показатели, то есть, применять к экспериментальным данным то или иное преобразование. Самым распространенным производным показателем является усреднение величин – например, средний вес людей, средний рост, средний доход на душу населения и т.п. Использование той или иной шкалы измерений определяет множество преобразований, которые допустимы для результатов измерений в этой шкале по теории измерений).

Начнем с наиболее слабой шкалы – шкалы наименований (номинальной шкалы), которая выделяет попарно различимые классы объектов. Например, в шкале наименований измеряются значения признака пол: мужской и женский. Эти классы будут различимы независимо от того, какие различные термины или знаки для их обозначений будут использованы: особи женского пола и особи мужского пола, или female и male, или А и Б, или 1 и 2, или 2 и 3 и т.д. Следовательно, для шкалы наименований применимы любые взаимно-однозначные преобразования, то есть сохраняющие четкую различимость объектов (таким образом, самая слабая шкала – шкала наименований – допускает самый широкий диапазон преобразований).

Отличие порядковой шкалы (шкалы рангов) от шкалы наименований заключается в том, что в шкале рангов классы (группы) объектов упорядочены. Поэтому произвольным образом изменять значения признаков нельзя – должна сохраняться упорядоченность объектов (порядок следования одних объектов за другими). Следовательно, для порядковой шкалы допустимым является любое монотонное преобразование. Например, если оценка объекта А – 5 баллов, а объекта Б – 4 балла, то их упорядочение не изменится, если мы число баллов умножим на одинаковое для всех объектов положительное число, или сложим с некоторым одинаковым для всех числом, или возведем в квадрат и т.д. (например, вместо 1, 2, 3, 4, 5 используем соответственно 3, 5, 9, 17, 102). При этом изменятся разности и отношения баллов, но упорядочение сохранится.

Для шкалы интервалов допустимо уже не любое монотонное преобразование, а только такое, которое сохраняет отношение разностей оценок, то есть линейное преобразование – умножение на положительное число и/или добавление постоянного числа. Например, если к значению температуры в градусах Цельсия добавить 2730С, то получим температуру по Кельвину, причем разности любых двух температур в обеих шкалах будут одинаковы.

И, наконец, в наиболее мощной шкале – шкале отношений – возможны лишь только преобразования подобия – умножения на положительное число. Содержательно это означает, что, например, отношение масс двух предметов не зависит от того, в каких единицах измерены массы – граммах, килограммах, фунтах и т.д. Суммируем сказанное в Табл., которая отражает соответствие между шкалами и допустимыми преобразованиями.

Табл.

Шкалы и допустимые преобразования


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: