Частотное и временное разделение сигналов

При частотном разделении каналов (ЧРК) каждое из подлежащих передаче сообщений занимает полосу частот стандартного канала ТЧ. В процессе формирования группового сигнала каждому канальному сигналу отводится неперекрывающаяся со спектрами других сигналов полоса частот . Тогда общая полоса частот N -канальной группы будет равна . Считая, что применяется однополосная модуляция и каждый канальный сигнал занимает полосу частот , для спектра группового сигнала получим

.

Групповой сигнал преобразуется в линейный сигнал sл(t) и передается по линии связи (тракту передачи). На приемной стороне после преобразования линейного сигнала в групповой, последний с помощью полосовых канальных фильтров Ф К (см. рис. 11.1) с полосой пропускания и демодуляторов Д К преобразуется в канальное сообщение , которое направляется получателям сообщений.

На вход приемного устройства i –го канала одновременно действуют сигналы всех N каналов. Чтобы без взаимных помех разделить сигналы, каждый из фильтров Ф i должен пропускать без ослабления только те частоты, которые принадлежат данному i –му каналу; частоты сигналов всех других каналов фильтр Ф i должен подавлять. За счет неидеальности характеристик полосовых канальных фильтров возникают взаимные переходные помехи между каналами. Для снижения этих помех до допустимого уровня необходимо вводить защитные частотные интервалы между каналами . В современных системах многоканальной телефонной связи каждому каналу выделяется полоса частот 4 кГц, хотя частотный спектр передаваемых речевых сигналов ограничивается полосой 300…3400 Гц, т. е. ширина спектра сигнала составляет 3,1 кГц. Таким образом, в данном случае = 0,9 кГц. Это означает, что в многоканальных системах с ЧРК эффективно используется примерно 80% полосы пропускания тракта передачи. Кроме того, необходимо обеспечить очень высокую степень линейности всего группового тракта.

При временном разделении каналов (ВРК) групповой тракт с помощью синхронных коммутаторов передатчика и приемника поочередно предоставляется для передачи сигналов каждого канала многоканальной системы. Структурная схема многоканальной системы передачи с ВРК приведена на рис.11.2.

В качестве канальных сигналов в системах с ВРК используются неперекрывающиеся во времени последовательности модулированных импульсов (например, по амплитуде). Совокупность канальных сигналов образует групповой сигнал.

При временном разделении также возможны переходные помехи между каналами, которые в основном обусловлены двумя причинами. Первой причиной является неидеальность АЧХ и ФЧХ тракта передачи, а второй – неидеальность синхронизации коммутаторов на передающей и приемной стороне. Для снижения уровня взаимных помех при ВРК также приходится вводить защитные временные интервалы. Это требует уменьшения длительности импульса каждого канала и, как следствие, расширения спектра сигналов. Так, в многоканальных системах телефонной связи полоса эффективно используемых частот FВ =3100 Гц. В соответствии с теоремой отсчетов Котельникова минимальное значение частоты дискретизации fД = 2fВ = 6200 Гц. Однако в реальных системах выбирают fД =8 кГц (с запасом).

Теоретически ВРК и ЧРК эквивалентны по эффективности использования частотного спектра, однако в реальных условиях системы с ВРК несколько уступают системам с ЧРК по этому показателю из-за трудностей снижения уровня взаимных помех при разделении сигналов. Однако системы с ВРК имеют неоспоримое преимущество, связанное с тем, что благодаря разновременности передачи сигналов различных каналов в них отсутствуют переходные помехи нелинейного происхождения. В системах ВРК ниже пик-фактор. Кроме того, аппаратура ВРК значительно проще аппаратуры ЧРК. Наиболее широкое применение ВРК находит в цифровых системах передачи с ИКМ.

Частным случаем временного разделения является разделение сигналов по фазе, при котором можно обеспечить лишь двухканальную передачу [1].

В общем случае сигналы, занимающие общую полосу частот и передаваемые одновременно, могут быть разделены, если выполняется условие их линейной независимости или условие ортогональности [1].

Этим требованиям удовлетворяют сигналы, различающиеся по форме. В цифровых многоканальных системах с разделением по форме используют ортогональные последовательности в виде функций Уолша. Обобщением разделения по форме, являются асинхронно-адресные системы связи (ААСС). В таких системах легко реализуются резервы пропускной способности, возникающие за счет «мало активных» абонентов. Так, например, можно организовать 1000-канальную систему связи, в которой одновременно ведут передачу любые 50-100 абонентов из тысячи [3].

При комбинированном методе разделения групповой сигнал представляет собой отображение определенных комбинаций дискретных канальных сообщений посредством чисел, соответствующих номеру комбинации. Эти числа могут передаваться с помощью сигналов дискретной модуляции любого вида. Например, для двоичных кодов (m=2) и числе каналов N=2 групповое сообщение может принимать возможных значения, соответствующих различным комбинациям нулей и единиц:00, 01, 10, 11. Для N -канальных систем потребуется различных значений модулируемого параметра (частоты, фазы). В общем случае можно модулировать одновременно несколько параметров переносчика, например, амплитуду и фазу, частоту и фазу и т. д. Структурная схема многоканальной системы с комбинационным (кодовым) разделением (уплотнением) представлена на рис.11.3.

Рис.11.3. Структурная схема многоканальной системы с комбинационным уплотнением

В последнее время большой интерес проявляется к системам амплитудно-фазовой модуляции (АФМ), которые можно реализовать схемой квадратурной модуляции. В системах АФМ в течение интервала передачи одного элементарного сигнала его фаза и амплитуда принимают значения, выбранные из ряда возможных дискретных значений амплитуд и фаз. Каждая комбинация значений амплитуды и фазы отображает один из многопозиционных сигналов группового сигнала с основанием кода . Сигналы АФМ можно формировать также путем многоуровневой амплитудной и фазовой модуляции двух квадратурных (сдвинутых по фазе на ) колебаний несущей частоты [1].

В последние годы успешно развивается также теория сигнально-кодовых конструкций (СКК), направленная на повышение скорости передачи и помехоустойчивости при существенных ограничениях на энергетику и занимаемую полосу частот. Вопросы теории СКК рассмотрены в главе 11 [1].


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: