а Сваи без оболочки

применяют в связных сухих и маловлажных грунтах, где можно осуществлять бурение без крепления стенок скважин.

В водонасыщенных глинистых грунтах проходку скважин производят под защитой глинистого раствора, который, создавая избыточное давление в скважине, препятствуют обрушению ее стенок. После выполнения буровых работ в забой скважины через бетонолитную трубу подается бетонная смесь, которая вытесняет раствор глины.

Набивную сваю, скважина которой получена бурением, принято называть буронабивной.

Последовательность изготовления такой сваи представлена на рис. 11.8.

Чтобы не использовать глинистый раствор при бурении используют полый шнек. Во время бурения стенки скважины удерживаются лопастями, а при поднятии шнека по полой трубе подается бетон.

Армирование сваи в зависимости от проектируемого сооружения, внешних нагрузок и инженерно- геологических условий производится на полную длину, на часть длины или только в верхней части с ростверком.

Скважину, помимо бурения, можно получить и другими способами:

- пробить инвентарным сердечником, трубой с закрытым нижним концом;

- вытрамбовать специальной трамбовкой;

- взрывом гирлянды зарядов взрывчатого вещества в лидерной скважине.

Такой способ формирования скважин приводит к значительному уплотнению грунта основания, что повышает несущую способность изготавливаемых свай.

52. Набивные сваи

Понятие «набивные сваи» объединяет большое число различных конструкций свай и методов их изготовления. Но для всех видов набивных свай принципиально общей является основная технологическая схема: в грунте тем или иным методом устраивают скважину, которую затем заполняют бетоном.

Если до заполнения скважины бетоном в нее опускают стальной арматурный каркас, то получается железобетонная набивная свая.,

Применение того или иного способа устройства скважины и способа заполнения ее бетоном зависит от многих факторов: геолого- и гидрогеологических условий строительной площадки, эксплуатационных требований к свайному фундаменту, механовооружен-ности строительства и т. п.

В зависимости от материала, конструкции и способов изготовления различают следующие виды набивных свай:

по материалу — бетонные, железобетонные, песко- и грунто-бетонные, песчаные, грунтовые, комбинированные с применением металлической, асбоцементной и синтетических оболочек, сборного железобетона, дерева;

по глубине заложения — короткие (до 6 м) и длинные (более 6 м). - Кроме этого, набивные сваи подразделяют:

в зависимости от расположения свай в плане — одиночные, свайные кусты, полосы и поля;

по способу заделки — со свободной головой и заделкой в бетон ростверка или фундаментной плиты;

по отношению оси к горизонтальной плоскости — вертикальные и наклонные;

по горизонтальному сечению ствола — круглые сплошные и кольцевые;

по вертикальному сечению ствола — цилиндрические, гофрированные, конические, с уширенной пятой;

по характеру работы в грунте — висячие сван, сваи-стойки и анкерные.

Способы образования скважин следующие: механическое и вибромеханическое бурение, пробивка отверстий конусом или лидер-ной трубой, бурение под глинистым раствором, взрывной метод.

Применяют следующие способы бетонирования ствола: прямое, с применением вертикально перемещающейся трубы (ВПТ), под глинистым раствором, под защитой обсадной трубы, бетонирование с трамбованием, пневмо- и гидропрессование, раздельное бетонирование и др.

Способы образования уширен и й стволов возможны следующие: механическое трамбование, механическое бурение сухим способом или под глинистым раствором, гидро- и электромеханическим раздавливанием, термомеханическим бурением, вибрированием, пневмо- и гидропрессованием и взрывным методом.

В основу предлагаемой в настоящей работе классификации, набивных свай положены способы устройства скважин и методы их бетонирования.

53. Методы испытания свай пробной статистической нагрузкой, математические методы расчета

Статические испытания могут назначаться на стадии изысканий, до начала рабочего проектирования, в процессе забивки свай, при приемке забитых свай. Цель их на стадии изысканий — выбор длины и сечения свай и оценка их несущей способности; в процессе забивки и при приемке забитых свай — определение фактической несущей способности свай и сопоставление ее с расчетной, принятой в проекте.

Данные, полученные в результате статических испытаний, отличаются значительно большей достоверностью и точностью, чем при динамических испытаниях. Поэтому, несмотря на большую сложность и трудоемкость статических испытаний по сравнению с динамическими, они назначаются, как правило, при строительстве сложных и крупных объектов с большим числом свай в фундаменте.

Статические и динамические испытания должны проводиться в соответствии с ГОСТ 5686-69 «Сваи и сваи-оболочки. Методы полевых испытаний».

Для проведения статических испытаний при изысканиях забивается несколько пробных свай. Число их и места забивки определяются проектирующей организацией. Испытания в процессе забивки и при приемке производятся на сваях, расположенных в местах с наихудшими для данного объекта грунтовыми условиями или давших наибольшие отказы при забивке. Испытания должны начинаться по истечении трех суток после забивки в песчаные грунты и шести суток в связные глинистые грунты.

Статические испытания выполняются в соответствии с требованиями ГОСТ 5686 «Грунты. Методы полевых испытаний сваями», СНиП 2.02.03-85 «Свайные фундаменты», СП 50-102-2003 «Проектирование и устройство свайных фундаментов», «Программы проведения испытаний свай».

Испытываемую сваю нагружают ступенями, переход к следующей ступени нагружения осуществляют после полной стабилизации осадки на предыдущей ступени.

Для измерения осадки испытываемой сваи устанавливают четыре индикатора часово­го типа с ценой деления 0,01 мм.

Реактивные усилия, возникающие при нагружении испытываемой сваи, передаются через систему балок на анкерные сваи. Для регистрации возможного выдергивания анкерных свай на каждую сваю устанавливаются по 2 индикатора часового типа с ценой деления 0,01 мм. С учетом возможного удлинения верхней части арматурного каркаса, выдергивание анкерных свай во время испытания не должно превышать 2 мм.

Перед нагружением сваи берут нулевые отсчеты по всем приборам. На каждой ступени нагружения сваи снимают отсчеты по всем приборам.

54. Внецентренно нагруженный свайный фундамент

Типы фундаментов, используемые в строительстве, различаются в зависимости от характера конструкций, которые планируется организовывать на их основании.

Так, внецентренно нагруженный фундамент представляет собой несущую строительную конструкцию, которая характеризуется несовпадением центра тяжести площади ее подошвы и равнодействующей внешних нагрузок.

Такая ситуация влечет за собой определенную степень неустойчивости конструкции, которая должна быть учтена и скорректирована в ходе осуществления проектных работ: например, посредством использования такой технологии, как армирование.

Основное отличие центрально нагруженного фундамента от внецентренно нагруженного в различных вариантах, включая использование такой технологии, как армирование, заключается в том, что в последнем случае максимальная нагрузка приходится на край несущей конструкции, что обусловливает дополнительные требования к ее несущей способности. В некоторых случаях такую способность необходимо усиливать для придания конструкции достаточной устойчивости, обеспечивающей возможность возведения на этом основании планирующегося к строительству здания.

Например, осуществить это усиление можно, прибегнув к армированию подошвы фундамента или установив колонну. Однако нужно понимать, что конструкции армируются в случае, если этого требует ситуация. Таким же образом складывается ситуация, если решено установить колонну: конкретный способ усиления несущей способности внецентренно нагруженного фундамента и необходимость его использования должна быть осуществлена непосредственно в ходе проектных работ после того, как произведен необходимый расчет.

55. Уплотнение грунтов машинами и тяжелыми трамбовками

Уплотнение грунтов тяжелыми трамбовками производится свободным сбрасыванием с помощью крана-экскаватора с высоты 5—10 м трамбовок диаметром 1,4—3,5 м и весом 40—150 кН [3]. Тяжелые трамбовки применяются для уплотнения всех видов грунтов в их природном залегании (просадочных, засоленных, насыпных, рыхлых песчаных грунтов), а также вновь отсыпанных при подготовке оснований под фундаменты, устройстве грунтовых подушек, возведении планировочных насыпей, земляных сооружений, обратных засыпках котлованов и т.п.

Эффективность уплотнения грунтов тяжелыми трамбовками определяется диаметром, весом, высотой сбрасывания трамбовки, а также степенью плотности, влажности, структурной прочностью уплотняемых грунтов. С увеличением диаметра, веса и высоты сбрасывания трамбовки глубина уплотнения возрастает [см. табл. 13.5 и формулу (10.36)]. Наибольшая эффективность уплотнения грунтов по глубине достигается при оптимальной влажности. При повышении степени плотности и структурной связности эффективность уплотнения снижается (в частности, в насыпных грунтах глубина уплотнения обычно на 30—40 % больше, чем в грунтах естественного сложения).

Основания на уплотненных тяжелыми трамбовками различного вида грунтах проектируются так же, как и на просадочных с I типом грунтовых условий (см. п. 10.1).

Уплотнение грунтов тяжелыми трамбовками весом до 50—70 кН выполняется с помощью оборудованных стрелой-драглайн строительных кранов-экскаваторов Э-1252 и Э-10011 грузоподъемной силой соответственно 250 и 180 кН, а трамбовками весом 100—150 кН — карьерных кранов-экскаваторов Э-2502 грузоподъемной силой 500-600 кН. В целях обеспечения нормальной работы крана-экскаватора в тяжелом режиме грузоподъемная сила крана-экскаватора должна в 3—4 раза превышать вес трамбовки. Для обеспечения требуемой высоты сбрасывания в необходимых случаях стрела удлиняется за счет вставки в среднюю часть дополнительного звена.

Трамбовка изготовляется из железобетона, имеет в плане форму круга или многоугольника (с числом сторон не менее восьми). Поддон и боковые стенки ее сворачиваются из листовой стали толщиной 8—16 мм, а подъемные петли — из листовой стали толщиной 20—40 мм (рис. 13.5). Трамбовка подвешивается к рабочему тросу крана-экскаватора с помощью вертлюгов и промежуточного троса длиной 1—1,5 м с грузом весом 200—500 Н, которые обеспечивают натяжение рабочего троса и исключают его преждевременный износ вследствие образования перегибов.

До начала производства работ обычно выполняется опытное уплотнение грунтов тяжелыми трамбовками для уточнения режима и эффективности уплотнения грунтов при их различной влажности по схеме, приведенной на рис. 13.6. Уплотнение производится с замером понижения уплотняемой поверхности по металлическим штырям, забитым по центру каждого следа, нивелированием после каждых двух уларов трамбовки.

56. Уплотнение грунтов взрывами.

Вытрамбовывание котлованов

Для осуществления способа уплотнения слабосвязных грунтов взрывами по карте уплотнения грунта размещают заряды взрывчатых веществ заданной массы с выбранным шагом и количеством серий. Затем проводят серию взрывов взрывчатых веществ в определенной последовательности. После окончания консолидации грунта каждой серии взрывов измеряют осадок грунта. Проведение взрывов в каждой серии осуществляют путем взрывания отдельных зарядов или групп зарядов с интервалом времени t, который определяется по формуле. 3 ил.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Изобретение относится к области строительства, в частности к уплотнению грунтов взрывами.

Известен опыт уплотнения грунтов взрывами зарядов взрывчатых веществ, расположенных на некотором расстоянии друг от друга на карте уплотнения.

Недостаток этого метода неравномерное уплотнение грунта по толщине слоя и площади уплотнения.

Наиболее близким техническим решением является метод уплотнения грунтов взрывами, расположенных в плане по квадратной сетке на расстоянии друг от друга, равном 2Rэф, где Rэф радиус эффективного действия взрыва, иначе расстояние, на котором достигается достаточно равномерное уплотнение грунта заданной толщины. Заряды последующей серии взрывания на этой же площадке уплотнения размещаются аналогично вышесказанному, но в промежутках между зарядами предыдущей серии.

Известный метод заключается в одновременном взрывании всех зарядов в каждой серии, образующих в плане замкнутый контур. Взрывание зарядов последующей серии производится только после полной стабилизации осадок от взрыва грунта предыдущей серии, т. е. после завершения процесса консолидации слабосвязного грунта. Рекомендуемая последовательность взрывания способствует наиболее эффективному разрушению структуры грунта и его последующего уплотнения за счет повышения интенсивности динамического воздействия при наложении ударных волн. Заданная плотность в плане и по глубине достигается в основном количеством серий взрывов зарядов. Увеличение количества серий взрывов способствует увеличению осадки поверхности и плотности грунта.

Недостатки этого метода невозможность увеличения плотности грунта без увеличения количества серий взрывов и неэффективное использование явлений образования в грунтовом массиве гравитационных волн при взрывании зарядов.

Вытрамбовывание грунтов производят с помощью кранов или экскаваторов с комплектом навесного оборудования. Фундаменты в вытрамбованных котлованах проектируются монолитными с учетом бетонирования их враспор со стенками котлована. В ходе вытрамбовывания происходит одновременно устройство котлована и уплотнение грунтов. В основании фундаментов образуется уплотненная зона с γ d ≥ 16 кН/м3, что приводит к устранению просадки в этой зоне.

В том случае, если в основании котлована во время трамбования укладывается щебень или жесткий бетон, при его втрамбовывании создается уширение, что приводит к увеличению несущей способности основания от 1,5 до 3 раз в зависимости от объема втрамбованного материала.

57. Песчаные и грунтовые сваи

Песчаные сваи применяют для уплотнения сильно сжимаемых пылевато-глинистых грунтов, рыхлых песков и заторфованных грунтов на глубину до 18...20 м.

Песчаные сваи изготовляют следующим образом. В грунт с помощью вибратора или свайного молота погружается пустотелая металлическая труба диаметром 300...400 мм с инвентарным самораскрывающимся наконечником, (рис.1,а). После погружения трубы в неё засыпается песок на высоту З...4 м. После этого включают вибратор и трубу начинают поднимать. При этом наконечник раскрывается, труба поднимается на высоту 2...3 м и в скважине остаётся столб песка (рис.1,б). Трубу следует поднимать так, чтобы после подъёма в ней оставался слой песка толщиной не менее I м. Указанные операции повторяются до полного извлечения трубы, после чего в оснований остаётся столб уплотнённого песчаного грунта (песчаная свая). Вокруг песчаной сваи грунт также находится в уплотнённом состоянии (рис.1,в).

Уплотнение грунта песчаными сваями обычно производится под всем сооружением, Сваи располагаются в шахматном порядке

Фундамент, расположенный на основании, уплотнённом песчаными сваями, следует рассматривать как фундамент на естественном основании с учётом физико-механических характеристик уплотнённого грунта.

58. Фундаменты глубокого заложения: опускные колодцы

Опускной колодец представляет собой открытую сверху и снизу железобетонную (реже стальную и бетонную) конструкцию (рис. 9.1), стены которой в нижней части имеют заострения (консоли), обычно усиленные металлом (ножи). Опускные колодцы погружаются в грунт под действием собственного веса по мере разработки и удаления грунта, расположенного в полости колодца и ниже его ножа.

Рис. 9.1. Опускной колодец а — погружение колодца.; б — фундамент в виде опускного колодца; 1 — консоли; 2 — стенки колодца; 3 — надфундаментная часть опоры; 4 — железобетонная плита; 5 — бетон, уложенный насухо; 6 — подводный бетон; 7 — прочный грунт; 8 — слабый грунт
Стены колодцев либо сооружают сразу на полную высоту, либо наращивают по мере погружения колодцев в грунт (рис. 9.1,а).
Погружение опускных колодцев в грунт производят с откачкой или без откачки воды из их полости.
После достижения опускным колодцем проектной глубины заложения фундамента полость колодца целиком (рис. 9.1,6) или частично заполняют бетонной смесью сначала подводным способом, а затем насухо. В верхней части колодца сооружают распределительную железобетонную плиту, на которой впоследствии ведут кладку надфундаментной части опоры; в некоторых случаях такую плиту не делают.
Опускные колодцы применяют в случаях расположения грунтов с достаточной несущей способностью на больших (более 5—8 м) глубинах, когда сооружение фундаментов в открытых котлованах из-за сложности крепления их стен экономически нецелесообразно или технически неосуществимо. Так как в подобных случаях кроме опускных колодцев можно применять фундаменты из свай или оболочек, выбор типа фундамента производят на основе технико-экономического сравнения вариантов. Достоинством фундаментов из опускных колодцев является возможность их погружения без использования сложного технологического оборудования. Недостатками их являются большой объем кладки и значительные трудности, возникающие при встрече колодцев в водонасыщенных грунтах с препятствиями в виде крупных валунов, скальных прослоек, топляков и т. п. Устранение таких препятствий возможно лишь после откачки воды из колодцев, что при водонасыщенных грунтах не всегда удается сделать. Трудности, связанные с необходимостью осушения колодца, возникают и при посадке его на скальный грунт, поверхность которого не бывает строго горизонтальной и нуждается в планировке для возможности опирания на него колодца по всему периметру

59. Фундаменты глубокого заложения: кессоны

В сильно обводненных грунтах, содержащих прослойки скальных пород или твердых включений (валуны, погребенную древесину и т.д.) погружение опускных колодцев по схеме «насухо» требует больших затрат на водоотлив, а разработка грунта под водой невозможна из-за наличия в грунте твердых включений.

В этом случае используется кессонный метод устройства фундаментов глубокого заложения, который был предложен во Франции в середине 19в.

Кессон схематически представляет собой опрокинутый вверх днищем ящик, образующий рабочую камеру, в которую под давлением нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не позволяет ей проникать в рабочую камеру, благодаря чему разработка грунта ведется насухо без водоотлива.

Метод является более дорогостоящим и сложным, поскольку требует специального оборудования. Кроме того, этот способ связан с пребыванием людей в зоне повышенного давления воздуха, что значительно сокращает продолжительность рабочих смен (до 2 часов при 350…400кПа(max)) при максимальной глубине 35-40м.

В связи с вышесказанным кессоны применяют значительно реже других типов фундаментов глубокого заложения.

Кессонная камера, высота которой по санитарным нормам принимается не менее 2,2 м, выполняется из ж/б и состоит из потолка и стен, называемых консолями.

Способ погружения кессона аналогичен опускному колодцу. Глубину погружения кессона и его внешние размеры определяют так же, как и для опускных колодцев.

Шлюзовой аппарат, соединенный с кессонной камерой шахтными трубами, предназначен для шлюзования людей и грузов при их спуске в кессонную камеру и при подъеме из нее.

Рабочий процесс. Рабочий входит в прикамерок шлюза, где давление постепенно повышается до имеющегося в рабочей камере. На этот процесс затрачивается от 5 до 15 мин., что необходимо для адаптации организма человека, после чего по шахтной трубе рабочий опускается в рабочую камеру кессона. Выход из рабочей камеры кессона осуществляется в обратной последовательности, но при этом на снижение давления воздуха в прикамерке шлюза до уровня атмосферного давления требуется 3-3,5 раза больше времени, чем вначале, т.к. быстрый переход от повышенного давления к атмосферному может быть причиной начала кессонной болезни.

Сжатый воздух в кессонную камеру начинают подавать не сразу, а как только ее нижняя часть при погружении достигнет уровня подземных вод. Давление воздуха, обеспечивающее отжим воды из камеры кессона, определяется из условия:

Где - избыточное (сверх атмосферного) давление воздуха, кПа;

- гидростатический напор на уровне банкетки ножа, м;

- удельный вес воды,

После опускания кессона на проектную глубину все специальное оборудование демонтируется, а рабочая камера заполняется бетоном.

Грунт в камере кессона разрабатывается или ручным или гидромеханическим способом.

Имеется опыт разработки грунта в кессонной камере вообще без присутствия в ней рабочих, когда все управление гидромеханизмами выносится за ее пределы. Такой способ опускания кессона называется слепым.

60. Фундаменты глубокого заложения: тонкостенные оболочки и буровые опоры

Тонкостенная оболочка представляет собой пустотелый цилиндр из обычного или предварительно напряженного ж/б. Они начали широко применяться только с появлением мощных вибропогружателей, позволяющих погружать в грунт элементы больших размеров.

Оболочки выпускаются секциями длиной от 6 до 12м и наружным диаметром от 1 до 3м. Длина секций кратна 1м, толщина стенок составляет 12см. На рис 13.10 в качестве примера показана секция оболочки диаметром 1,6м.

Наилучшими типами стыков являются сварной, применяемый для предварительной сборки на строительной площадке, и фланцевый на болтах, используемый для наращивания оболочек в процессе погружения. (рис.13.11)

Погружение оболочек в грунт осуществляется, как правило, вибропогружателями. Для облегчения погружения, а также для предотвращения разрушения оболочки при встрече с твердыми включениями конец нижней секции снабжается ножом.

Обычно для повышения сопротивления оболочки действию значительных внешних усилий обычно ее полость после погружения до заданной глубины заполняется бетоном. При погружении в песчаные грунты внизу оставляют уплотненное песчаное ядро высотой не менее 2м. (рис.13.12а)

Благодаря этому сохраняется естественная плотность песчаного грунта в основании оболочки, что обеспечивает лучшее использование его несущей способности.

Чтобы снизить объем укладываемого бетона или вообще исключить производство бетонных работ на строительной площадке, разработаны конструкции оболочек с утолщенными до 16…20 см стенками ­– усиленные оболочки.

Разновидностью усиленных оболочек являются оболочки с несущей диафрагмой. Диафрагма устраивается в нижней секции оболочки на высоте одного – двух ее диаметров и имеет центральное отверстие для извлечения грунта из ее полости при погружении (рис. 13.12 б).

В нескальных грунтах увеличение несущей способности оболочки по грунту достигается устройством внизу уширенной плиты.

Достоинства тонкостенных оболочек:

· индустриальность их изготовления;

· высокая сборность и механизация всех работ;

· лучшее использование прочностных свойств материала фундамента.

Наиболее рационально тонкостенные оболочки применять при больших вертикальных и горизонтальных нагрузках. Такие сочетания нагрузок наиболее характерны для мостов, гидротехнических и портовых сооружений.

Буровые опоры представляют собой бетонные столбы, которые возводят путем укладки бетонной смеси в предварительно пробуренные скважины. Укладка бетонной смеси производится под защитой либо глинистого раствора, либо обсадных труб, извлекаемых при бетонировании.

Технология устройства буровых опор та же, что и буронабивных свай. По существу, они представляют собой буронабивные сваи большого сечения (d >80см).

Нижние концы буронабивных опор обязательно доводят до плотных грунтов, поэтому они работают как стойки. Иногда их делают с уширенной пятой.

Буровые опоры обладают значительной несущей способностью (≥1000т) и рассчитываются как сваи-стойки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: