Получение алюминия особой чистоты

Алюминий особой чистоты (марки A999) может быть получен тремя способами: зонной плавкой, дистилляцией через субгалогениды и электролизом алюминий-органических соединений. Из перечисленных способов получения алюминия особой чистоты практическое применение в СССР получил способ зонной плавки.

Принцип зонной плавки заключается в многократном прохождении расплавленной зоны вдоль слитка алюминия. По величине коэффициентов распределения К=С тв ж (где С тв — концентрация примеси в твердой и С ж — в жидкой фазе), которые в значительной мере определяют эффективность очистки от примесей, эти примеси могут быть разбиты на три группы. К первой группе относятся примеси, понижающие температуру плавления алюми­ния; они имеют К<1, при зонной плавке концентрируются в расплав ленной зоне и переносятся ею к конечной части слитка. К числу этих примесей принадлежат Ga, Sn, Be, Sb, Ca, Th, Fe, Co, Ni, Ce, Te, Ba, Pt, Au, Bi, Pb, Cd, In, Na, Mg, Cu, Si, Ge, Zn. Ко второй группе принадлежат примеси, повышающие темпера­туру плавления алюминия; они характеризуют­ся К>1 и при зонной плавке концентрируются в твердой (начальной) части слитка. К этим примесям отно­сятся Nb, Ta, Cr, Ti, Mo, V. К третьей группе относятся примеси с коэффици­ен­­том распределения, очень близким к единице (Mn, Sc). Эти примеси практи­чески не удаляются при зонной плавке алюминия.

Алюминий, предназначенный для зонной плавки, подвергают некоторой под­готовке, которая заключается в фильтрации, дегазации и травлении. Фильтра­ция необходима для удаления из алюминия тугоплавкой и прочной окисной пленки, диспергированной в металле. Окись алюминия, присутствующая в рас­плавленном алюминии, может при его затвердевании создавать центры крис­таллизации, что ведет к получению поликристалличес­кого слитка и нарушению эффекта перераспределения примесей между твердым металлом и расплавлен­ной зоной. Фильтрацию алюминия ведут в вакууме (остаточное давление 0,1-0,4 Па) через отверстие в дне графитового тигля диаметром 1,5-2 мм. Предва­рительную дегазацию алюминия перед зонной плавкой (также нагреванием в вакууме) проводят для предупреждения разбрызгивания металла при рас­плавлении зоны в случае проведения процесса в глубоком вакууме. Последняя стадия подготовки алюминия к зонной плавке — травление его поверхности смесью концентрированных соляной и азотной кислот.

Так как алюминий обладает значительной химической активностью и в ка­честве основного материала для контейнеров (лодочек) применяют особо чи­стый графит, то зонную плавку алюминия проводят в вакууме или в атмосфере инертного газа (аргон, гелий).

Зонной плавкой в вакууме обеспечивается большая чистота алюминия вслед­ствие улетучивания части примесей при вакуумировании (магния, цинка, кад­мия, щелочных и щелочноземельных металлов), а также исключается загряз­нение очищенного металла примесями в результате применения защитных инертных газов. Зонную плавку алюминия в вакууме можно проводить при не­прерывной откачке кварцевой трубы, куда помещают графитовую лодочку со слитком алюминия, а также в запаянных кварцевых ампулах, из которых пред­варительно откачивают воздух до остаточного давления примерно 1ּ10–3 Па.

Для создания расплавленной зоны на слитке алюминия при его зонной плавке может быть применен нагрев с помощью небольших печей сопротивле­ния или же токов высокой частоты. Для электропитания печей электросопро­тивления не требуется сложной аппаратуры, печи просты в эксплуатации. Един­ственный недостаток этого метода нагрева — небольшое сечение слитка очи­щаемого алюминия.

Индукционный нагрев токами высокой частоты — идеальный способ созда­ния расплав­ленной зоны на слитке при зонной плавке. Метод высокочастотного нагрева (помимо того, что он позволяет осуществить зонную плавку слитков больших сечений) имеет важное преимущество, заключающееся в том, что рас­плавленный металл непрерывно перемешива­ется в зоне; это облегчает диффу­зию атомов примеси от фронта кристаллизации в глубь расплава.

Впервые промышленное производство алюминия высокой чистоты зонной плавкой было освоено на Волховском алюминиевом заводе в 1965 г. на уста­новке УЗПИ-3, разработанной ВАМИ. Эта установка была оснащена четырьмя кварцевыми ретортами с индукционным нагревом, при этом индукторы были подвижными, а контейнеры с металлом неподвижными. Производительность ее составляла 20 кг металла за цикл очистки. Впослед­ствии была создана и введена в промышленную эксплуатацию в 1972 г. на Волховском алюминиевом заводе более высокопроизводительная цельнометаллическая уста­новка УЗПИ-4.

Эффективность очистки алюминия при зонной плавке может быть охарак­теризована следующими данными. Если суммарное содержание примесей в элек­тролитически рафинированном алюминии составляет (30÷60)ּ10–4%, то после зонной плавки оно снижается до (2,8÷3,2)ּ10–4%, т. е. в 15-20 раз. Это отве­чает остаточному электросопротивлению алюминия ρ (при температуре жид­кого гелия 4,2 К) соответственно (20÷40)ּ10–10 и (1,8÷2,1)ּ10–10 или чистоте 99,997—99,994 и 99,9997%. В табл. 1.4 (см. ниже) приведены данные радиоактивационного анализа о содержании некоторых примесей в зонно-очищенном алюминии и электролитически рафинированном. Эти данные свидетельствуют о сильном сни­жении содержания большинства примесей, хотя такие примеси, как марганец и скандий, при зонной плавке практически не удаляются.

В последние годы в ВАМИ разработана и опробована в промышленных условиях технология получения алюминия чистотой 99,9999% методом каскад­ной зонной плавки. Сущность способа каскадной зонной плавки заключается в том, что очистку исходного алюминия чистотой А999 ведут, последовательно повторяя циклы (каскады) зонной планки. При этом исходным материалом каж­дого последующего каскада служит средняя, наиболее чистая часть слитка, по­лучаемого в результате предыдущего цикла очистки.

ТАБЛИЦА 1.4

СОДЕРЖАНИЕ ПРИМЕСЕЙ В ЭЛЕКТРОЛИТИЧЕСКИ РАФИНИРОВАННОМ И ЗОННООЧИЩЕННОМ АЛЮМИНИИ, ×10–4 %

Примесь Исходный алюминий (электролитически рафинированный 99,993-99,994 %) Алюминий после зонной плавки
графит, вакуум алунд, воздух
Медь 1,9 0,02 0,08
Мышьяк 0,15 0,0015 0,001
Сурьма 1,2 0,03 0,02
Уран 0,002
Железо   ≤0,2 ≤0,3
Галий 0,3 0,02 0,05
Марганец 0,2—0,3 0,1—0,2 0,15
Скандий 0,4—0,5 0,4—0,5 0,4—0,5
Иттрий 0,02—0,04 <<0,001 <<0,001
Лютеций 0,002—0,004 <<0,0001 <<0,0001
Гольмий 0,005—0,01 <<0,0001 <<0,0001
Гадолиний 0,02—0,04 <<0,01 <<0,01
Тербий 0,003—0,006 <<0,001 <<0,001
Самарий 0,05—0,01 <<0,0001 <<0,0001
Неодим 0,1—0,2 <<0,01 <<0,01
Празеодим 0,05—0,1 <<0,001 <<0,001
Церий 0,3—0,6 <<0,01 <<0,01
Лантан 0,01 <<0,001 <<0,001
Никель 2,3 <1
Кадмий 3,5 <<0,01 0,02—0,07
Цинк   <<0,05  
Кобальт 0,01 <<0,01 <<0,01
Натрий 1—2 <0,2 <0,2
Калий 0,05 0,01 0,01
Барий  
Хлор 0,01 <0,01 <0,01
Фосфор   0,04
Сера   0,5—1,5
Углерод 1—2 1—2
Примечание. Количества теллура, висмута, серебра, молибдена, хрома, циркония, кальция, стронция, рубидия, церия, индия, селена и ртути в алюминии после зонной плавки ниже чувствительности радиоактивного анализа.

В табл. 1.5 (см. ниже) приведены результаты масс-спектрального анализа и измере­ния R 293 К/ R 4,2 К алюминия, полученного каскадной зонной плавкой. Из приве­денных данных можно сделать заключение, что чистота такого алюминия, определенная по разности с десятью основными примесями (Si, Fe, Mg, Mn, Ti, Cu, Cr, Zn, Na, и V), составляет >99,9999%. Этот вывод кос­венно подтверждается величиной R 293 К/ R 4,2 К, которая во всех образцах составляла >30ּ103.

Для получения металла чистотой 99,9999% достаточно провести два кас­када зонной плавки (см. табл. 1.5). Дальнейшее увеличение числа каскадов не повышает чистоту алюминия, хотя и увеличивает общий выход металла чисто­той 99,9999%.

Другим возможным процессом для получения алюминия особой чистоты является его дистилляция через субгалогениды, в частности через субфторид алюминия.

Давление насыщенных паров металлического алюминия недостаточно вы­соко, чтобы осуществить его непосредственную дистилляцию с практически при­емлемыми скоростями. Однако при нагревании в вакууме (при 1000-1050°С) с AlF3 алюминий образует легколетучий субфторид AlF, который перегоняется в холодную зону (800°С), где вновь распадается (диспропорционирует) с вы­делением чистого алюминия:

Возможность глубокой очистки алюминия от примеси в основном обуслов­лена тем, что вероятность образования субсоединений алюминия значительно больше вероятности образования субсоединений примеси.

ТАБЛИЦА 1.5

РЕЗУЛЬТАТЫ МАСС-СПЕКТРАЛЬНОГО АНАЛИЗА И ИЗМЕРЕНИЙ R 293 К/ R 4,2 К АЛЮМИНИЯ КАСКАДНОЙ ЗОННОЙ ПЛАВКИ. [9]

Число каскадов Содержание примесей, ×10–4 %
Si Fe Mg Mn Ti сумма
Исходный 18,3 0,210 <0,103 0,89 <0,061 0,069 1,544
A999              
  36,5 <0,062 <0,103 0,006 <0,061 0,017 0,460
  38,0 <0,062 <0,103 0,006 <0,061 0,017 0,460
  39,5 0,073 <0,103 0,045 <0,061 0,07 0,563
  32,0 0,204 <0,103 0,006 <0,061 0,017 0,502
  30,0 0,073 0,100 0,006 0,020 0,07 0,480
  32,0 0,052 0,100 0,006 0,061 0,07 0,500
  40,0 <0,021 <0,103 0,006 0,061 0,07 0,472
  30,5 0,031 0,100 0,006 0,061 0,07 0,479
  34,0 0,104 <0,060 0,006 0,061 0,017 0,459
Примечания: 1. Сумма примесей дана с учетом других примесей, со­держание которых во всех образцах составляло, ×10–4 %: <0,071 Cu; <0,038 Cr; 0,048 Zn; 0,017 Na; 0,037 V. 2. При подсчете суммы примесей принимали их мак­симальное значение, равное пределу чувствительности анализа, например <0,061 считали как 0,061.

Содержание примесей, в алюминии, дистиллированном через субфторид, находится в обратной зависимости от массы получаемых слитков. В слитках мас­сой 1,5-1,7 кг суммарное содержание примесей (Si, Fe, Cu, Mg) составляет 11ּ10–4 %, а содержание газов 0,007 см3/100 г. Удельное остаточное сопротив­ление (ρ) при температуре жидкого гелия для такого металла составляет (1,7÷2,0)ּ10–10 Омּсм. Дистилляция алюминия через субфторид имеет ряд не­достатков (сравнительно небольшая производительность, недостаточно глубокая очистка от магния и др.), поэтому способ не получил промышленного развития.

Разработаны также способы получения алюминия особой чистоты электро­лизом комплексных алюминийорганических соединений, отличающиеся составом электролита. Например, в ФРГ применяют способ электролиза 50%-ного рас­твора NaFּ2Al (C2H5)3 в толуоле. Рафинирование проводят при 100°С, на­пряжении на электролизере 1,0-1,5 В и плотности тока 0,3-0,5 А/дм2 с использованием алюминиевых электродов. Катодный выход по току 99%. Элект­рохимическим рафинированием в алюминийорганических электролитах сущест­венно снижается содержание марганца и скандия, которые практически не удаляются при зонной очистке. Недостатками указанного способа являются его низкая производительность и высокая пожароопасность.

Для более глубокой очистки алюминия и получения металла чистотой 99,99999% и более можно использовать комбинирование указанных выше спо­собов: электролиз алюминийорганических соединений или возгонку через субфторид с последующей зонной плавкой полученного алюминия. Например, многократной зонной очисткой алюминия, полученного электролизом алюминийорганических соединений, удается получить металл особой чистоты с содержанием примесей, ×10–9 %: Fe 50; Si <500; Cu 10; Mg 30; Mn 5; Ti <500; Cr 20; Zn <50; Co <1; Ag <5; Sb <1 и Se 3.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: