Законы наследования

Предмет и история развития генетики

Генетика (от греч. genesis— происхождение) — наука о наследственности и изменчивости организмов. Термин «генетика» предложил в 1906 г. У. Бэтсон. Наследственность — свойство живых существ обеспечивать материальную и функциональную преемственность между поколениями, а также обусловливать специфический характер индивидуального развития в определенных условиях внешней среды. Наследственность — это воспроизведение жизни (Н. П. Дубинин). Изменчивость — это возникновение различий между организмами по ряду признаков и свойств.

Наследственность, изменчивость и отбор —основа эволюции. Благодаря им возникло огромное разнообразие живых существ йа Земле. Мутации поставляют первичный материал для эволюции. В результате отбора сохраняются положительные признаки и свойства, которые благодаря наследственности передаются из поколения в поколение. Знание закономерностей наследственности и изменчивости способствует более быстрому созданию новых пород животных, сортов растений и штаммов микроорганизмов.

С. М. Гершензон выделяет четыре основные теоретические проблемы, изучаемые генетикой:

1)хранения генетической информации (где и каким образом закодирована генетическая информация);

2)передачи генетической информации от клетки к клетке, от поколения к поколению;

3)реализации генетической информации в процессе онтоге неза;

4)изменения генетической информации в процессе мутаций. Бурное развитие генетики связано с тем, что она откры

Законы наследования.Общая терминология.Моногибридное скрещивание.

Законы Менделя — это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя. Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности

Законы наследования

Диплоидный хромосомный набор состоит из пар гомологичных хромосом. Одна хромосома из каждой пары унаследована от материнского организма, другая - от отцовского. В результате каждый ген на гомологичной хромосоме имеет соответствующий ген, локализованный в том же месте на другой гомологичной хромосоме. Такие парные гены называются аллельными, или аллелями. Аллели могут быть абсолютно идентичными, но возможны и вариации в их строении Когда известно множество аллелей, представляющих собой альтернативные варианты гена, локализованного в определенном участке хромосомы, говорят о множественном аллелизме. В любом случае у нормального диплоидного организма могут присутствовать только два аллеля, поскольку имеются только пары гомологичных хромосом.

Первый закон Менделя
Рассмотрим ситуацию, при которой скрещиваются организмы, различающиеся по одной паре признаков (моногибридное скрещивание) Пусть таким признаком будет цвет глаз. У одного родителя это аллели А, соответственно его генотип для таких аллелей - АА. При данном генотипе цвет глаз - карий. У другого родителя на обеих хромосомах находится аллель а (генотип аа), цвет паз - голубой. При образовании половых клеток гомологичные хромосомы расходятся в разные клетки. Поскольку у родителей Оба аллеля одинаковы, то они образуют только один сорт половых клеток (гамет). У одного родителя гаметы содержат только аллель А, у другого только аллель а. Такие организмы называются гомозиготными по данной паре генов.

В первом поколении (F1) у потомства будет одинаковый генотип Аа и одинаковый фенотип - карие глаза. Явление, при котором в фенотипе проявляется только один признак из альтернативной пары называется доминированием, а ген, контролирующий данный признак-доминантным. Аллель а в фенотипе не проявляется, присутствуя в генотипе в «скрытом» виде. Такие аллели получили название рецессивных. В данном случае выполняется правило единообразия гибридов первого поколения: у всех гибридов одинаковые генотип и фенотип.

Второй закон Менделя.
Второй закон Менделя, или закон независимого распределения генов. Он установлен посредством анализа наследования при дигибридном и полигибридном скрещивании, когда скрещиваемые особи отличаются по двум парам аллелей и более. Независимое распределение генов происходит потому, что при образовании потовых клеток (гамет) гомологичные хромосомы из одной пары расходятся независимо от других пар. Поэтому второй закон Менделя в отличие от первого действует только в случаях, когда анализируемые пары генов расположены на разных хромосомах.

Закон независимого комбинирования, или третий закон Менделя. Изучение Менделем наследования од­ной пары аллелей дало возможность установить ряд важных генетических закономерностей: явление доми­нирования, неизменность рецессивных аллелей у гибри­дов, расщепление потомства гибридов в отношении 3:1, а также предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельнои пары. Одна­ко организмы различаются по многим генам. Устано­вить закономерности наследования двух пар альтерна­тивных признаков и более можно путем дигибридного или полигибридного скрещивания.

Моногибридное скрещивание

Фенотип и генотип. Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков.

Признак —любая особенность организма, т. е. любое отдельное его качество или свойство, по которому можно различить две особи. У растений это форма венчика (например, симметричный—асимметричный) или его окраска (пурпурный—белый), скорость созревания растений (скороспелость—позднеспелость), устойчивость или восприимчивость к заболеванию и т. д.

Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения и функционирования клеток, тканей и органов, называется фенотипом. Этот термин может употребляться и по отношению к одному из альтернативных признаков.

Признаки и свойства организма проявляются под контролем наследственных факторов, т. е. генов. Совокупность всех генов организма называют генотипом.

Примерами моногибридного скрещивания, проведенного Г. Менделем, могут служить скрещивания гороха с такими хорошо заметными альтернативными признаками, как пурпурные и белые цветки, желтая и зеленая окраска незрелых плодов (бобов), гладкая и морщинистая поверхность семян, желтая и зеленая их окраска и др.

Единообразие гибридов первого поколения (первый закон Менделя). При скрещивании гороха с пурпурными и белыми цветками Мендель обнаружил, что у всех гибридных растений первого поколения (F1) цветки оказались пурпурными. При этом белая окраска цветка не проявлялась (рис. 3.1).

Мендель установил также, что все гибриды F1 оказались единообразными (однородными) по каждому из семи исследуемых им признаков. Следовательно, у гибридов первого поколения из пары родительских альтернативных признаков проявляется только один, а признак другого родителя как бы исчезает. Явление преобладания у гибридов F1 признаков одного из родителей Мендель назвал доминированием, а соответствующий признак — доминантным. Признаки, не проявляющиеся у гибридов F1 он назвал рецессивными.

Поскольку все гибриды первого поколения единообразны, это явление было названо К. Корренсом первым законам Менделя, или законом единообразия гибридов первого поколения, а также правилом доминирования.

З аконы наследования.Полигибридное скрещивание.

Законы Менделя — это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя. Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: