Энергетическая эффективность процесса электролиза (КПД электролизера)

Как было отмечено выше, минимальное напряжение, при котором процесс электролиза воды может происходить в одной электролизной ячейке, составляет 1,23 вольта – это так называемый равновесный потенциал обратимой реакции. В реальных условиях для электрохимического получения достаточных количеств продуктов необходима существенно большая разность потенциалов, связанная с явлениями поляризации электродов (перенапряжение). Но мы не будем вникать в тонкости электрохимической кинетики.

КПД электролизера численно равен отношению минимально необходимой для получения единицы массы вещества электрической энергии к практически затрачиваемой, выраженному в процентах.

Приложение разности потенциалов (напряжения) к электродам позволяет перенести некоторый заряд, поддерживая некоторую силу тока через ячейку в течение некоторого промежутка времени. Очевидно, чем меньшее напряжение будет приложено и чем больший токовый выход будет иметь место при всех прочих равных условиях, тем больше будет и энергетическая эффективность процесса. Таким образом, максимальный КПД может быть получен при напряжении на ячейке, равном равновесному потенциалу (1,23В), при 100%- ном токовом выходе.

Основываясь на предыдущем изложении, получаем формулу:

U - среднее напряжение на электролизере [В], I - ток через электролизер [А], t - время [сек], в течение которого производится объем газа V[л], 7060 Дж/л - минимальная энергия для производства одного литра газа при нормальных условиях.

Поскольку в реальных условиях одна и та же масса газа будет иметь разный объем в зависимости от его температуры и атмосферного давления, необходимо делать соответствующую поправку (источник)

В следующем выражении учтены температура газа и атмосферное давление:

Когда нами проводились эксперименты с целью отработки конструкции электролизной системы, было сделано несколько опытов для проверки правильности расчетов ее КПД. Для этого в лабораторных условиях электролизер какой-либо очередной конструкции, соединенный с ним резервуар электролита (термостатирующий контур не подключен), а также газоотводящий шланг и барботер с водой для промывки газа термоизолировались пенопластом или вспененным полиэтиленом, после чего через электролизер подавали постоянный ток 25-35 ампер (стабилизация по току) в течение продолжительного времени – 30-50 минут. Поскольку КПД электролизера заведомо был ниже 100%, часть мощности тратилась на нагревание. Были известны –время эксперимента (электронный секундомер), исходная и конечная температура электролита и всех частей установки, включая технологические жидкости (прямое измерение), а также их масса (прямое измерение) и теплоемкости (справочные данные по использованным материалам), кроме того, в течение эксперимента через короткие интервалы времени регулярно измерялись рабочее напряжение (мультиметр) и стабилизированный ток (амперметр с шунтом 50А, 75 мВ). Производительность по газу определялась с помощью газовых часов. Атмосферное давление определялось бытовым барометром. После очередного эксперимента по данным о темпе газовыделения, токе и усредненном по времени напряжении делался расчет КПД (метод законов электролиза). Параллельно производился и расчет калориметрическим способом – по темпу тепловыделения. Последний метод всегда давал завышенное значение КПД системы по сравнению с первым, очевидно, вследствие неучтенных теплопотерь. Однако, расхождение результатов расчетов не превышало 10-12%.

Твой парень скорострел? После ЭТОГО он будет держаться в 7 РАЗ дольше!

1 2 3 4 5 6


2.4 Ошиновка электролизёра

Ошиновка электролизёра служит для подвода (анодная) и отвода (катодная) тока. В анодную часть ошиновки входят гибкие пакеты, анодные стояки и уравнительные шины, от которых ток при помощи специальных контактов передаётся к штырям. Катодная часть ошиновки состоит из гибких лент – катодных спусков, отводящих ток от блюмсов, и катодных шин.

Конструкция ошиновки

должна удовлетворять следующим основным требованиям:

· возможность быстрого включения и отключения ванны в цепь без нарушения работы всей серии;

· плотность тока в шинах должна быть экономически выгодной, то есть такой, при которой сумма затрат энергии и стоимости ошиновки будет минимальна;

· обеспечение равномерного распределения электрического тока по аноду и катоду;

· минимизация волнений и искривления поверхности расплавленного алюминия, возникающих под действием электромагнитных сил и приводящих к снижению выхода по току и срока службы электролизера.

 
 


На электролизерах С-8БМ анодная ошиновка каж­дой из сторон ванны состоит из двух пар металлически не связанных между собой анодных пакетов (I–II и III–IV), которые соединены с катодными блюмсами, выходящими на одну сторону ванны (рисунок 1).

Рисунок 1 – Развернутая схема ошиновки электролизеров С-8БМ

А, Б, В, Г – узлы соединения анодной ошиновки с 4-, 5-, 3- и 2-шинными

стояками. Соответственно I, II, III и IV – пакеты анодных шин
По проекту ошиновка выполнена из алюминиевых шин сечением 430×60 мм. На продольных сторонах катода распо­ложено по семь шин, разбитых на четыре секции и подсо­единенных к соответствующему узлу анодной ошиновки следу­ющего по ходу тока электролизера. При этом пять шин катодной ошиновки, расположенные на правой (по ходу тока) стороне ванны, подключены к узлу Б анодной ошиновки следующего по ходу тока электролизера, а две обводные шины – к узлу Г. На левой стороне ванны четыре шины катодной ошиновки подсоединены к узлу А, а три обводные шины – к узлу В анодной ошиновки следующего по ходу тока электролизера. Таким образом, ток к аноду подводится четырьмя стояками: входные стояки состоят из пяти и четырех шин, а обводные — из двух и трех шин.

Однако, как следует из рисунка 1 и таблицы 5, к каждой катодной шине подсоединено разное количество блюмсов (от полутора до трех). При равномерном распределении тока по блюмсам плотность тока, по крайней мере в десяти шинах из 14, значительно превышает экономически выгодную, находящуюся для алюминиевых шин в пределах 0,20 – 0,35 А/мм2 [2].
Таблица 5 – Плотность тока в катодных шинах

Сторона Номер шины (от катодного кожуха) Количество подключенных блюмсов, шт Плотность тока, А/мм2
Лицевая 1 2 0,450
2 2 0,450
3 3 0,674
4 3 0,674
5 1,5 0,337
6 1,5 0,337
7 2 0,450
Глухая 1 2 0,450
2 2 0,450
3 2,5 0,496
4 2,5 0,496
5 3 0,674
6 1,5 0,337
7 1,5 0,337


Анодная ошиновка электролизера состоит из четырех параллельных ветвей (I – IV), к каждой из которых подсо­единяются по 18 анодных штырей. К каждой из ветвей анодной ошиновки подключено разное количество блюмсов. Если узлы А, Б, В и Г имеют надежный контакт, то количество блюмсов, подключенных к левой (ветви I и II) и правой (ветви III и IV) половинам анода, будет равно 15, это должно обеспечить равномерное распреде­ление тока по аноду

Ошиновка электролизера выполнена 14 шинами, по 7 шин с каждой стороны, поперечное сечение шины 430×60 мм. Общее сечение шинопровода составляет:
,

где S – площадь поперечного сечения одной шины, мм2;

n – число шин.
Средняя плотность тока в шинах:
.

Плотность тока в шинах превышает экономически выгодную практически в 2 раза.

Катодные стержни (блюмсы) сечением 230×115 мм изготавливают из стали марки Ст–3. Они соединяются с катодными шинами при помощи гибких пакетов из алюминиевых лент–спусков, приваренных к катодным стержням и шинам.

Сечение пакета из алюминиевых лент (спусков):
,

где dэк – экономически выгодная плотность тока для алюминиевых спусков.

Число лент в пакете:
,

где S – сечение одной ленты, 1,5×200 мм.

Ток к аноду подводится 72 сталеалюминиевыми штырями (ТУ 48-22-77-81), расположенными в 4 ряда. Общая длина штыря составляет 2850 мм, длина стальной части 2090 мм, наибольший диаметр конической части 138 мм, наименьший диаметр 100 мм, длина алюминиевой штанги 1150 мм, сечение штанги 80 50 мм. Среднее сечение анодного штыря Sср составляет:

.

Общая площадь штырей So составляет:
.

Тогда средняя плотность тока в штырях составит:
.

То есть плотность тока в штырях незначительно превышает экономически выгодную плотность тока для стали, равную 0,2 А/мм2.

Плотность тока в электролите iэ, рассчитываем с учетом площади зеркала металла SAl. Если принять толщину гарниссажа на уровне металла 5 см, то площадь поверхности зеркала металла составит:
,

где g – толщина гарниссажа на уровне металла.

Тогда плотность тока в электролите (катодная плотность тока) составит:
.

2.5 Электрический баланс электролизёра

Для производства алюминия требуются большие затраты электрической энергии, и вопрос о снижении её расхода является одним из важнейших в алюминиевой промышленности. Вот почему необходимо знать, на каких участках электролизёра происходят потери электроэнергии, и от каких причин они зависят.

Расчёт электрического баланса состоит в определении падений напряжения в конструктивных элементах электролизёра, в электролите и напряжений поляризации.

Различают три вида напряжений:

1. Среднее напряжение U – включает в себя все виды падения напряжения, в том числе среднее повышение напряжения от анодных эффектов и падение напряжения в общесерийной ошиновке;

2. Рабочее напряжение Uр – это фактическое напряжение, определяемое показаниями вольтметра на ванне, т.е. среднее напряжение без учёта падения напряжения в общесерийной ошиновке и среднего повышения напряжения от анодных эффектов;

3. Греющее напряжение Uгр – учитывает падение напряжения во всех греющих элементах электролизёра, т.е. находящихся внутри того объекта, с поверхности которого рассчитываются потери тепла в окружающее пространство. Греющее напряжение обязательно включает в себя и напряжение поляризации.

Таким образом можно записать:

;

;

,

где: Е – напряжение поляризации, В;

DUэл – падение напряжения в электролите, В;

DUа – падение напряжения в аноде, В;

DUк – падение напряжения в катоде, В;

DUош – падение напряжения в ошиновке ванны, В;

DUаэ–повышение падения напряжения за счёт анодных эффектов, В;

DUс – падение напряжения в общесерийной ошиновке, В.

2.5.1 Напряжение поляризации

Напряжение поляризации, или ЭДС поляризации представляет собой термодинамическую величину напряжения разложения для реакции разложения глинозёма с образованием СО2, плюс анодные и катодные перенапряжения, минус деполяризация, вызванная растворенным в электролите алюминием [7].

Оценить величину напряжения поляризации (ЭДС поляризации) можно по значениям трех её составляющих: напряжения разложения глинозема, катодного и анодного перенапряжений.

Величину практического напряжения разложения глинозема можно выразить следующим образом [7]:
,

где – напряжение разложения глинозема до СО2, составляющее 1,19 В при температуре 1223 К; – напряжение разложения до СО, составляющее 1,08 В при температуре 1223 К.

Анодное перенапряжение имеет концентрационную составляющую, связанную с замедленной доставкой оксифторидных ионов, и составляющую, связанную с замедленностью химической реакции. Перенапряжение реакции описывается следующим уравнением[8]:

,

где: ilim предельная плотность тока, А/см2;

Т – температура электролиза, К.

Предельная плотность тока:

.

Тогда перенапряжение реакции составит:

Концентрационное перенапряжение ηс на аноде вызывается наличием градиента концентраций оксифторидных комплексов, и оно может быть заметно при приближении к анодному эффекту:

,

где ic – критическая плотность тока.

Критическую плотность тока, отвечающую нулевой концентрации этих комплексов у границы анод-электролит, можно оценить по уравнению Пионтелли:

,

.
Тогда концентрационное перенапряжение составит:
.

Катодное концентрационное перенапряжение ηкат зависит от катодной плотности тока i, криолитового отношения КО и скорости движения межфазной границы. Для его оценки существует эмпирическое выражение [8,9]:
,

.
В результате ЭДС поляризации составляет:
.

Рассчитанное значение ЭДС поляризации соответствует практическим данным для электролизеров С-8БМ и С-8Б [10].
2.5.2 Падение напряжения в аноде
Падение напряжения в аноде зависит от размеров анода, формы и размеров токоподводящих штырей, среднего расстояния до подошвы анода, удельного сопротивления анода и плотности тока. Для оценки тенденций влияний различных факторов на перепад напряжения в аноде полезно использовать эмпирическое уравнение М.А. Коробова [11]:
,

где lср – среднее расстояние от всех токоведущих штырей до подошвы анода, см;

rа – среднее удельное электросопротивление анода в интервале температур (750¸950) оС, Ом·см.

Среднее расстояние от штырей до подошвы анода составляет:
,

где lmin – минимальное расстояние от конца штыря до подошвы анода, 20¸25 см (принимаем 23 см);

nг –число горизонтов (nг= 12);

Dl – шаг между горизонтами – 3 см.

Среднее удельное электросопротивление анода рассчитывается по формуле:
,
где t – средняя температура анодного массива, °С.

Тогда величина падения напряжения в аноде составит:

2.5.3 Падение напряжения в электролите
Для расчёта падения напряжения в электролите используется уравнение, предложенное Г.В. Форсбломом и В.П. Машовцом [12]:
,

где pэл – удельное электросопротивление электролита, Ом·см;

2(La + Ba) – периметр анодного массива, см.

Для расчета удельного электросопротивления найдем удельную электропроводность электролита по эмпирическому уравнению [13]:

,

где Т – температура, К;

x=1,430·[Na3AlF6]+1,854·[Li3AlF6]+3,856·[LiF]+0,576·[CaF2]+0,595·[AlF3]-

-0,490·[Al2O3];

y=47,61·[Na3AlF6]+50,56·[Li3AlF6]+55,90·[LiF]+33,94·[CaF2]+59,54·[AlF3]+

+58,85·[Al2O3]+35,31[MgF2]; члены в квадратных скобках – концентрации добавок, %масс.

Удельная электропроводность электролита выбранного нами состава, %: 80,0 Na3AlF6; 4,0 Al2O3; 11,0 AlF3; 5,0 CaF2. (К.О.=2,23) составит:

;

;

Тогда удельное электросопротивление электролита составит:
.

Падение напряжения в электролите составляет весомую долю напряжения на ванне, поэтому необходимо чётко следить за этой величиной. Так как электролизёр работает на повышенной силе тока, то необходимо снижать МПР для того, чтобы уменьшить количество тепла, генерируемого в электролите за счет протекания электрического тока. В проекте электролит выбран кислый, алюминий в нем растворяется очень слабо, степень протекания обратной реакции вблизи анода невысока, и это даёт возможность уменьшать МПР.

Однако не следует забывать, что величина междуполюсного расстояния очень сильно влияет на стабильность работы электролизёра, и значительное снижение МПР не допустимо. Исходя из данных таблицы 2, минимальное МПР при котором наблюдается стабильная работы электролизера, составляет 4,5 см. Падение напряжения в электролите при этом составит:
.
При расчете падения напряжения в электролите необходимо учесть дополнительное сопротивление, создаваемое пузырьками газа под анодом.

Дополнительное падение напряжения, вызванное пузырьковым слоем, можно оценить по уравнению [14,15]:
,

где db – средняя толщина пузырькового слоя, см;

χпуз – удельная электропроводность пузырькового слоя, 0,7- 2,0 Ом-1·см-1;

Ф – фактор экранирования анода газом, д.е.

Cреднюю толщину пузырькового слоя можно рассчитать по уравнению предложенному Хайдом и Велчем (Hyde и Welch), а также [15]:
.

Данные Аберга (Aberg) по экранированию анода газом были дополнены данными Хаупина (Haupin) и использованы для расчета фактора экранирования по уравнению:

,

где ВО – весовое криолитовое отношение электролита равное КО/2;

%Al2O3ае – концентрация глинозема в ванне во время анодного эффекта, %.

Фактор экранирования:

Дополнительное падение напряжения, вызванное пузырьковым слоем, составит:

.

С учетом этого значения падение напряжения в электролите составит:

.
2.5.4 Падение напряжения в катодном устройстве

При расчете падения напряжения в катоде используется уравнение М.А. Коробова [16]:

,

,

где Lпр – приведенная длина пути тока по блоку, см;

ρб – удельное электросопротивление блока, 20·10-4 Ом·см (ТУ 1913-109-021-99);

А – половина ширины шахты ванны, 207,5 см;

B – ширина блока с учетом шва, 59 см;

S – площадь поперечного сечения паза, (14,5×26) см2;

а – ширина настыли, см. Ширина настыли мощных электролизеров равна расстоянию борт-анод плюс 10-15 см [2], принимаем ширину настыли a=75 см.

h и b – ширина и высота паза под блюмс, см (b=26 см, h=14,5 см).

Падения напряжения в катоде составит:

,

2.5.5 Падение напряжения в ошиновке

Падение напряжения в ошиновке рассчитывается по отдельным элементам и прибавляют падение напряжения в контактах.
DUа.ош. = r*L*I / S = 0,033*(11+3)*185000 / 528571 = 0,162 В
где: r - удельное электросопротивление алюминия, Ом*мм2 / м;

L – длина анодной ошиновки = 11м, и анодного стояка = 3м.
DUк.ош. = 0,033*12*185000 / 528571 = 0,139 В
где: L – длина катодной ошиновки = 12м.

Принимаются следующие падения напряжений в контактах, В:
Катодная шина – гибкий пакет 0,003

Гибкий пакет – анодный стояк 0,002

Анодный стояк – анодная шина 0,003

Анодная шина – анодный штырь 0,002

Катодный стержень – спуск 0,006

Катодный спуск – катодная шина 0,005

Для реакций электролиза, что ли?
Это масса вещества, образовавшегося в результате электролиза при пропускании через раствор тока определенной силы (I - сила тока, измеряется в амперах - А) в течение определенного времени (t, измеряется в секундах - с). Рассчитывается с помощью закона Фарадея по формуле:
m = (э*I*t)/F, где э - эквивалентная масса вещества, равная отношению его молярной массы к количеству принятых (или отданных) электронов; F = 96 500 Кл - число Фарадея
(т.е. расчет не по другим веществам - участникам реакции (реагентам или продуктам), а по значениям силы тока и времени электролиза).
Практический выход по току обычно меньше 100% (если в долях единицы - меньше 1), т.к. на практике, в реальных условиях, обязательно будут потери вещества. В таком случае выход по току равен отношению практической массы продукта электролиза к теоретической, рассчитанной по закону Фарадея; для выражения выхода в процентах результат нужно умножить на 100%. Выход продукта реакции обозначается греческой буквой "эта". Законы Фарадея


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: