Основное уравнение динамики в НИСО

Рис.1

Если тележку привести в поступательное движение с ускорением а 0, то нить будет отклоняться от вертикали в сторону, обратную движению, до такого угла α, пока результирующая сила F = P + T не даст ускорение шарика, равное а 0. Значит, результирующая сила F направлена в сторону ускорения тележки а 0 и для установившегося движения шарика (теперь шарик движется вместе с тележкой с ускорением а 0) равна F=mgtgα=ma0, откуда

т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки.

В системе отсчета, которая связана с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой F in, которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом,

(2)

Проявление сил инерции при поступательном движении мы можем видеть в повседневных явлениях. Если поезд набирает скорость, то пассажир, сидящий при этом по ходу поезда, прижимается к спинке сиденья под действием силы инерции. Наоборот, при торможении поезда пассажир отклоняется от спинки сиденья, т.к. сила инерции направлена в противоположную сторону. Особенно силы инерции заметны при внезапном торможении поезда. Эти силы проявляются в перегрузках, возникающие при запуске и торможении космических кораблей.

2. Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета. Пусть диск равномерно вращается с угловой скоростью ω (ω=const) вокруг перпендикулярной ему оси, которая проходит через его центр. На диске установлены маятники, на разных расстояниях от оси вращения и на нитях висят шарики массой m. Когда диск начнет вращаться, шарики отклоняются от вертикали на некоторый угол (рис. 2).


Рис.2

В инерциальной системе отсчета, которая связана, например, с помещением, где установлен диск, происходит равномерное вращение шарика по окружности радиусом R (расстояние от центра вращающегося шарика до оси вращения). Значит, на него действует сила, равная F=mω2R и которая направлена перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести Р и силы реакции (натяжения) нити Т: F = P + T. Когда движение шарика установится, то F=mgtgα=mω2R, откуда

т. е. углы отклонения нитей маятников будут тем больше, чем больше угловая скорость вращения &omega и чем больше расстояние R от центра шарика до оси вращения диска;.

Относительно системы отсчета, которая связана с вращающимся диском, шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой Fс, являющаяся ничем иным, как силой инерции, так как никакие другие силы на шарик не действуют. Сила F c, называемая центробежной силой инерции, направлена по горизонтали от оси вращения диска и равна

(3)

На практике действие центробежных сил инерции испытывают, например, пассажиры в движущемся автобусе на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и т. д., где они достигают очень больших значений. При проектировании быстро вращающихся деталей машин (винтов самолетов, роторов и т. д.) используются специальные механизмы для уравновешивания центробежных сил инерции.

Из формулы (3) следует, что центробежная сила инерции, которая действует на тела во вращающихся системах отсчета и которая направлена в сторону радиуса от оси вращения, зависит от угловой скорости вращения ω системы отсчета и радиуса R, но при этом не зависит от скорости тела относительно вращающихся систем отсчета. Значит, центробежная сила инерции действует во вращающихся системах отсчета на все тела, которые удалены от оси вращения на конечное расстояние, при этом не имеет значения, покоятся ли они в этой системе отсчета (как мы предполагали до сих пор) или движутся относительно нее с некоторой скоростью.

3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета. Пусть шарик массой m движется с постоянной скоростью ν' вдоль радиуса равномерно вращающегося диска (ν'=const, ω=const, ν перпендикулярно ω). Если диск не начал вращаться, то шарик, движется по радиальной прямой и попадает в точку А, если же диск привести во вращение в направлении, которое указанно стрелкой, то шарик покатится по кривой OВ (рис. 3а), причем его скорость ν' относительно диска сменит свое направление. Это возможно лишь в случае, если на шарик действует сила, которая перпендикулярна скорости ν'.


Рис.3

Чтобы заставить шарик катиться по вращающемуся диску вдоль радиуса, будем использовать жестко укрепленный вдоль радиуса диска стержень, на котором шарик движется без трения прямолинейно равномерно со скоростью ν' (рис. 3б). При отклонении шарика стержень действует на него с некоторой силой F. Во вращающейся системы отсчета, т.е. относительно диска, шарик движется прямолинейно и раномерно, что объясняется тем, что сила F уравновешивается приложенной к шарику силой инерции F k, которая перпендикулярной скорости ν'. Эта сила называется кориолисовой силой инерции.

Можно показать, что сила Кориолиса

Вектор F k перпендикулярен векторам скорости v ' тела и угловой скорости вращения системы отсчета в соответствии с правилом правого винта.

Сила Кориолиса действует только на тела, которые движутся относительно вращающейся системы отсчета, чаще всего рассматривается случай относительно Земли. Действием этих сил объясняется ряд наблюдаемых на Земле явлений. Так, если тело движется в северном полушарии на север (рис. 4), то действующая на него сила Кориолиса, как это следует из выражения (4), будет направлена вправо по отношению к направлению движения, т. е. тело несколько отклонится на восток. Если тело движется на юг, то сила Кориолиса также действует вправо, если смотреть по направлению движения, т. е. тело отклонится на запад. Поэтому в северном полушарии наблюдается более сильное подмывание правых берегов рек; правые рельсы железнодорожных путей по движению изнашиваются быстрее, чем левые, и т. д. Также можно показать, что в южном полушарии сила Кориолиса, которая действует на движущиеся тела, направлена влево по отношению к направлению движения.


Рис.4

Благодаря действию силы Кориолиса падающие на поверхность Земли предметы отклоняются к востоку (на широте 60° это отклонение должно составлять 1 см при падении с высоты 100 м). С силой Кориолиса связано движение маятника Фуко, которое явилось в свое время одним из доказательств вращения Земли. Если бы силы Кориолиса не было, то тогда плоскость колебаний качающегося вблизи поверхности Земли маятника оставалась бы неизменной (относительно Земли). Действие же данной силы приводит к вращению плоскости колебаний вокруг вертикального направления.

Раскрывая содержание F in в формуле (1), получим основной закон динамики для неинерциальных систем отсчета:

где силы инерции задаются формулами (2) - (4).

Еще раз подчеркнем, что силы инерции вызываются не взаимодействием тел, а ускоренным движением системы отсчета. По этой причине они не подчиняются третьему закону Ньютона, так как если на тело действует сила инерции, то не существует силы, противодействующей ей и приложенной к данному телу. Два основных положения механики, по которым ускорение всегда вызывается силой, а сила всегда обусловлена взаимодействием между телами, в системах отсчета, движущихся с ускорением, одновременно не выполняются.

Для любого из тел, которые находятся в неинерциальной системе отсчета, силы инерции являются внешними; Значит, здесь нет замкнутых систем, т.е. в неинерциальных системах отсчета не выполняются также и законы сохранения импульса, энергии и момента импульса. Значит, силы инерции действуют только в неинерциальных системах отсчета. В инерциальных системах отсчета таких сил не существует.

Возникает вопрос о реальном или фиктивном существовании сил инерции. В ньютоновской механике, в которой сила является результатом взаимодействия тел, на силы инерции можно смотреть как на не существующие в инерциальных системах отсчета или фиктивные. Однако возможна и другая их интерпретация. Поскольку взаимодействия тел осуществляются посредством силовых полей, то силы инерции рассматриваются как воздействия, которым подвергаются тела со стороны каких-то реальных силовых полей, и тогда их можно считать реальными. Независимо рассмотрения сил инерции в качестве реальных или фиктивных, многие явления, упоминающиеся в настоящем параграфе, объясняются с помощью сил инерции.

Силы инерции, которые действуют на тела в неинерциальной системе отсчета, пропорциональны их массам и при прочих равных условиях сообщают этим телам одинаковые ускорения. Значит в поле сил инерции эти тела движутся абсолютно одинаково, если только одинаковы начальные условия. Тем же свойством обладают тела, которые находятся под действием сил поля тяготения.

Возможны условия, при которых силы инерции и силы тяготения невозможно различить. Например, движение тел в равноускоренном лифте происходит точно так же, как и в неподвижном лифте, висящем в однородном поле тяжести. Никакой эксперимент, выполненный внутри лифта, не может отделить однородное поле сил инерции от однородного поля тяготения.

Аналогия между силами тяготения и силами инерции лежит в основе принципа эквивалентности сил инерции и гравитационных сил (принципа эквивалентности Эйнштейна): все физические явления в поле тяготения происходят так же, как и в соответствующем поле сил инерции, если напряженности обоих полей в соответствующих точках пространства совпадают, а остальные начальные условия для рассматриваемых тел одинаковы. Этот принцип является основой общей теории относительности.


текст номер 2
Напомним, что в классической механике длина масштабов и время считаются абсолютными, т.е. во всех системах отсчета время течет одинаково и одинаковы любые выбранные масштабы.

Итак, пусть имеются две произвольные системы отсчета и , движущиеся известным образом относительно друг друга. Заданы скорость и ускорение некоторой точки в системе. Требуется найти соответствующие значения и в системе.

Договоримся произвольно выбранную ИСО, например систему, считать неподвижной, а движение относительно неё условно назовём абсолютным. Движение системы отсчета относительно системы будем называть переносным. Движение тела относительно подвижной системы назовем относительным.

Тогда абсолютное движение тела складывается из его относительного движения и переносного вместе с подвижной системой отсчета.

Наша цель – изучить относительное движение.

Если движущаяся система отсчета инерциальна, то законы движения – это законы Ньютона. Поэтому рассмотрим только те случаи, когда система движется относительно неподвижной системы с ускорением.

1. система движется поступательно по отношению к системе.


Пусть в системе начало отсчета системы характеризуется радиус-вектором , а её скорость и ускорение – векторами и . Если положение точки в системе определяется радиус-вектором , а в системе – радиус-вектором , то ясно, что .

Пусть далее за промежуток времени точка

совершит в системе элементарное перемещение .

Это перемещение складывается из перемещения вместе

с системой и перемещения относительно

системы, т.е.

. (1)

Поделив это выражение на , получим искомую формулу

преобразования скорости:

. (2)

Продифференцировав полученное выражение по времени, найдем и формулу преобразования ускорения:

. (3)

2. система вращается с угловой скоростью вокруг оси, неподвижной в системе.

Получим сначала преобразования при условии .

Выберем начала отсчета и систем в произвольной точке

на оси вращения. Тогда в обеих системах отсчета радиус-вектор точки

будет один и тот же: .

Если точка неподвижна в системе (), это значит, что

её перемещение в системе за время обусловлено только

поворотом радиус-вектора на угол вместе с системой

и равно векторному произведению .

Если точка движется относительно системы со скоростью ,

то за время она совершит дополнительное перемещение и тогда

. (4)

Поделив на , получим формулу преобразования скорости:

, (5)

где и - скорости точки в и системах соответственно.

Перейдем к ускорениям.

В соответствии с (5) в системе приращение вектора за время должно складываться из суммы приращений векторов и [ , т.е.

, т.к. . (6)

Если точка движется в системе с постоянной скоростью

(, то в системе это приращение обусловлено

только поворотом вектора вместе с системой и равно

.

Если же точка имеет ускорение в системе, то за время

вектор дополнительно получит приращение . Тогда

. (7)

Подставив (4) и (7) в (6) и разделив на , получим формулу

преобразования ускорения:

, (8)

где и - ускорения точки в и системах отсчета. Второе слагаемое носит название кориолисова (или поворотного) ускорения

, (9)

третье слагаемое –осестремительное ускорение

(10)

{не путать с нормальным (центростремительным) ускорением}.

Рассмотрим более общий случай, объединяющий два предыдущих.

3. система вращается с угловой скоростью вокруг оси, перемещающейся поступательно со скоростью и ускорением по отношению к системе.

Легко понять, что формула преобразования скоростей примет следующий вид

. (11)

Формула преобразования ускорения в самом общем случае () приобретет вид:

, (12)

, (13)

где - радиус-вектор, перпендикулярный оси вращения и характеризующий положение точки относительно этой оси.

Введя обозначения , объединив члены выражения (12), не зависящие от относительного движения точки , можно написать

, (). (14)

Полученное выражение представляет собой математическую запись теоремы Кориолиса:

Абсолютное ускорение является векторной суммой относительного, кориолисова и переносного ускорений.

Основное уравнение динамики в НИСО.

Из выражения (13) следует, что ускорение частицы в системе (здесь )

. (15)

Умножив обе части уравнения (14) на массу частицы и учтя, что в ИСО , получаем

. (16)

Это и есть основное уравнение динамики в неинерциальной системе отсчета, которая вращается с некоторой угловой скоростью вокруг оси, перемещающейся поступательно с ускорением .

Очевидно, что даже при частица будет двигаться в этой системе отсчета с ускорением, в общем случае отличным от нуля, причем так, как если бы на него действовали силы, описываемые членами уравнения (16). Эти силы получили название сил инерции.

Из вида уравнения (16) следует, что введение сил инерции позволяет сохранить форму записи основного уравнения динамики и для НИСО. Однако кроме силы , обусловленной действием на частицу окружающих тел, необходимо учесть и силы инерции, описываемые остальными слагаемыми в правой части уравнения (16).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: