(Производная Гато) Производной функционала
в точке
по направлению
, очевидно, будет

Этого в принципе уже достаточно для решения типичной вариационной задачи — нахождения «стационарных точек», то есть таких функций
, для которых первая вариация или производная по направлению обращается в ноль для любой бесконечно малой
или любой конечной
. Именно эти «точки» в пространстве функций — то есть именно такие функции — являются кандидатами в экстремали (проверку того, действительно ли они являются экстремалями, то есть достигается ли на них локальный экстремум, надо делать отдельно, как и в случае функций конечномерного аргумента; интересно, что во многих задачах физики важнее найти не экстремали, а именно стационарные точки).






