Энергетическая диаграмма идеального гетероперехода

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение

Высшего профессионального образования

«ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет физико-математических и компьютерных наук

Кафедра физики

Специальность 050203.65 – «Физика и информатика»

Курсовая работа

по дисциплине (Физика)

на тему:

Гетероструктуры полупроводников

Выполнил:

студент 4 курса

группы ФИ-4

Корнев Денис

Липецк 2012

Содержание.

1. Определение гетероперехода.

2. Энергетическая диаграмма идеального гетероперехода.

3. Требования к материалам, образующим гетероструктуры.

4. Применение гетероструктур в наноэлектронике.

5. Приложение.

6. Использованная литература.


ОПРЕДЕЛЕНИЕ ГЕТЕРОПЕРЕХОДА

Полупроводниковые гетероструктуры лежат в основе конструкций современных транзисторов, приборов квантовой электроники, СВЧ - техники, электронной техники для систем связи, телекоммуникаций, вычислительных систем и светотехники.

Основным элементом гетероструктур различного типа является гетеропереход.

Под гетеропереходом понимается контакт двух различных по химическому составу полупроводников, при котором кристаллическая решетка одного материала без нарушения периодичности переходит в решетку другого материала.

Различают изотипные и анизотипные гетеропереходы. Если гетеропереход образован двумя полупроводниками одного типа проводимости, то говорят об изотипном гетеропереходе. Анизотипные гетеропереходы образуются полупроводниками с разным типом проводимости.

Существует три модели гетероперехода:

- идеальный гетеропереход;

- неидеальный гетеропереход;

- гетеропереход с промежуточным слоем.

В идеальном гетеропереходе, в отличие от неидеального, на границе раздела материалов отсутствуют локальные энергетические состояния для электронов. Гетеропереход с промежуточным слоем формируется через слой конечной толщины и локальные энергетические состояния могут существовать как в самом промежуточном слое, так и на границах его раздела.

ЭНЕРГЕТИЧЕСКАЯ ДИАГРАММА ИДЕАЛЬНОГО ГЕТЕРОПЕРЕХОДА

Для построения энергетической диаграммы часто применяют простое «правило электронного сродства» (в англоязычной литературе – правило Андерсона), согласно которому разрыв зоны проводимости равен разности электронного сродства двух материалов. Но следует иметь в виду, что данный подход далеко не всегда справедлив, так как в разрыв зон зависят еще и от деталей формирования связей на гетерогранице и деформационного потенциала.

Для построения энергетической диаграммы идеального гетероперехода должны быть известны следующие характеристики полупроводников:

- ширина запрещенной зоны (, ). При построении считаем, что ;

- термодинамическая работа выхода (, )– расстояние от уровня Ферми полупроводника до уровня вакуума. Следует учитывать, что термодинамическая работа выхода зависит от положения уровня Ферми, то есть от уровня легирования материала;

- сродство к электрону (, ) – расстояние от дна зоны проводимости до уровня вакуума.

При построении диаграммы считаем, что

- ширина запрещенной зоны и внешняя работа выхода неизменны до плоскости контакта, на которой они скачком изменяют свою величину;

- в приконтактном слое каждого из полупроводников происходит изменение потенциальной энергии электрона. Полное изменение потенциальной энергии равно разности работ выхода, что обеспечивает неизменное положение уровня Ферми вдоль гетероперехода.

До «приведения в контакт» двух полупроводников потенциальная энергия электронов в них разная из - за разной термодинамической работы выхода. При «соприкосновении» двух полупроводников, как и в случае обычного p-n-перехода, электроны начнут «переходить» из полупроводника с меньшей работой выхода в полупроводник с большей. Это будет происходить до тех пор, пока диффузионный ток не будет скомпенсирован дрейфовым током носителей заряда под воздействием поля, созданным избыточными носителями. При этом возникнет контактная разность потенциалов

и образуется область пространственного заряда шириной d (Рисунок 1).

Рисунок 1. Энергетические диаграммы полупроводников (а) и диаграмма идеального гетероперехода (б).

При таком построении видно, что из -за различия электронного сродства в контактирующих полупроводниках дно зоны проводимости первого полупроводника выходит на плоскость контакта в точке, не совпадающей в общем случае с точкой выхода на эту плоскость дна зоны проводимости второго полупроводника – формируется разрыв зоны проводимости . Он равен

Аналогично формируется и разрыв валентной зоны. Он равен:

Следует заметить, что разрывы зон могут быть как положительными так и отрицательными. Можно выделить следующие разновидности гетеропереходов:

1) охватывающий переход возникает, когда разрыв зоны проводимости и разрыв валентной зоны положительны. Такой случай реализуется, например, в гетеропереходе GaAs-AlGaAs. В литературе данный тип гетероперехода называют гетеропереходом I типа, или стандартным;

2) в случае же, когда разрыв один из разрывов зон положителен, а другой отрицателен говорят о переходе II типа, или ступенчатом. Данный случай реализуется в гетеропереходе .

3) также возможен вариант, когда запрещенные зоны вообще не перекрываются по энергии. Данный гетеропереход называет гетеропереходом III типа или разрывным гетеропереходом. Классический пример – гетеропереход InAs-GaSb. Экспериментально измеренные параметры основных типов гетеропереходов изображены на рисунке 2.

Рисунок 2. Экспериментально определенные разрывы валентной зоны и зоны проводимости двух наиболее близких по параметрам решетки гетеропар:а) и б) InAs-GaSb-AlSb.

В справочниках обычно приведены величины эффективных масс плотности состояний для электронов и дырок . Тогда и вычисляются по формулам

,

Если приведены поперечная и продольная составляющая эффективных масс, число эквивалентных эллипсоидов M, то плотность состояний в этом случае рассчитывается по формуле

В полупроводниках p-типа необходимо также учесть вклад двух подзон от легких и тяжелых дырок:

Далее по формулам вычисляем положение уровня Ферми и контактную разность потенциалов:

.

Для вычисления распределения потенциала в области пространственного заряда требуется решить совместно уравнение Пуассона и уравнение плотности тока, при условии, чтобы в равновесии диффузионный ток через переход уравновешивался дрейфовым током.

В приближении Шоттки в случае равномерного легирования полупроводников для анизотипного гетероперехода получается линейная зависимость поля и параболическая зависимость потенциала:

в области

В области

А размер области пространственного заряда получаются равными:

где , – контактные разности потенциалов, приходящиеся на n и p области,которые для идеального гетероперехода равны:

,

Полная длина ОПЗ:

Распределение поля и потенциала показано на рисунке 3.

Рисунок 3. Распределение поля и потенциала в резком анизотипном гетеропереходе.

Следует также принимать во внимание, что материалы гетеропары могут иметь минимумы зоны проводимости в разных точках зоны Брюллиена. К примеру, минимум зоны проводимости GaAs находится в точке Г, в то время как наименьший минимум в AlAs близок к точке X. Таким образом, природа низшего минимума зоны проводимости меняется при изменении доли Al в твердом растворе (рисунок 4). Низший минимум изменяется от прямого расположения (минимум в Г) зон до непрямой зонной структуры (минимум в Х) при содержании . Обычно твердый раствор получают с долей Al, меньше 0.4, чтобы получить прямое расположение зон.

Рисунок 4. Расположение валентной зоны и зоны проводимости в

.

Покажем простой способ построения энергетической диаграммы на конкретном примере. Пусть требуется построить энергетическую диаграмму . Используя справочные данные (см. Таблица 1), находим ширину запрещенной зоны и электронное сродство для материалов гетеропары. При этом учитываем, что при х =0.3 минимум зоны проводимости твердого раствора лежит в точке Г (см. рисунок 4). Для GaAs получаем и χ1=4.07 эВ, а для и .

Построение зонной диаграммы разобьем на несколько этапов. Сначала отдельно нарисуем зонные диаграммы для GaAs и в отсутствие контакта. Относительно энергии электрона в вакууме их следует располагать, используя определение электронного сродства.

Сразу можно вычислить разрыв зон проводимости. Разрыв зоны проводимости:

и разрыв валентной зоны:

В данном случае , , таким образом, этот гетеропереход относится к гетеропереходу I типа - дно зоны проводимости лежит выше дна зоны проводимости GaAs, а потолок валентной зоны лежит ниже потолка валентной зоны GaAs (рисунок 5, а).

Далее нарисуем уровни Ферми в двух полупроводниках в соответствии с уровнем легирования (рисунок 5, б). В данном примере считаем полупроводники невырожденными и просто располагаем уровень ферми в GaAs ближе к потолку валентной зоны, а в – ближе к дну зоны проводимости. Проводим ряд вспомогательных линий, которые помогутправильно построить диаграмму: это уровни , , являющиеся продолжением , GaAs в (рисунок 5, б).

Соединим плавной пунктирной линией уровни , и , в GaAs (рисунок 5, в). На последнем этапе нарисуем разрывы зон (рисунок 5, г).

Рисунок 5. Пример построения энергетической диаграммы гетероперехода

p-GaAs-n-AlGaAs.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: