МЕХАНИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА
Контрольные задания для студентов всех специальностей
Красноярск
УДК [531+533] (076)
ББК 22.2
Механика и молекулярная физика: Контрольные задания для студентов всех специальностей / КрасГАСА. Красноярск, 2004.
Составили
А. Е. Бурученко
А. А. Колесников
В. А. Захарова
С.С. Лаптев
О.П. Арнольд
Г.Н. Харук
П.П. Машков
Печатается по решению редакционно-издательского совета академии
Ó Красноярская государственная архитектурно-строительная академия, 2004
ВВЕДЕНИЕ
Физика – фундаментальная база для теоретической подготовки инженеров, без овладения которой их успешная деятельность невозможна.
На всех этапах обучения большое значение имеет практическое применение теоретических знаний в процессе решения задач. Это способствует приобщению студентов к самостоятельной творческой работе, учит анализировать изучаемые явления, выделять главные факторы, отвлекаясь от случайных и несущественных деталей.
Задачи, приведенные в методических указаниях, соответствуют программе общего курса физики в техническом вузе и охватывают разделы «Механика», «Колебания и волны», «Молекулярная физика» и «Термодинамика».
В работе отсутствуют сведения, которые при необходимости могут быть найдены в учебных пособиях по курсу общей физики (см. библиографический список). Поэтому вначале помещен краткий перечень формул и законов, необходимых для решения задач.
В приложении приведены основные справочные данные, дополняющие условия задач. Номера вариантов, которые должен выполнить студент, указывает преподаватель.
ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ
1.1. ОСНОВНЫЕ ФОРМУЛЫ И ЗАКОНЫ
Кинематика
Положение материальной точки в пространстве задаётся радиус-вектором
:
,
где
– единичные векторы направлений (орты); x, y, z – координаты точки.
Кинематические уравнения движения (в координатной форме) таковы:
;
;
,
где t – время.
Средняя скорость –
<
>=
,
где
– перемещение материальной точки за интервал времени
.
Средняя путевая скорость –
<
>=
,
где
- путь, пройденный точкой за интервал времени
.
Мгновенная скорость –
,
где
– проекции скорости
на оси координат.
Абсолютное значение скорости –
.
Ускорение –
,
где
;
;
– проекции ускорения
на оси координат.
Абсолютное значение ускорения –
.
При криволинейном движении ускорение можно представить как сумму нормальной
и тангенциальной
составляющих, см. рис 1

Рис. 1.
| Абсолютное значение этих ускорений –
; ; ,
где R – радиус кривизны в данной точке траектории.
|
Кинематическое уравнение равнопеременного движения материальной точки вдоль оси x:
,
где
- начальная координата; t – время.
При равномерном движении
;
= 0.
Кинематическое уравнение равнопеременного движения (a=const) вдоль оси x:

где
– начальная скорость; t – время.
Скорость точки при равномерном движении:
.
Кинематическое уравнение вращательного движения:
.
Средняя угловая скорость –
,
где
- изменение угла поворота за интервал времени
.
Мгновенная угловая скорость –
.
Угловое ускорение –
.
Кинематическое уравнение равномерного вращения –
,
где
- угловое перемещение; t – время. При равномерном вращении
и ε=0.
Частота вращения –
, или
,
где N – число оборотов, совершаемых телом за время t; Т – период вращения (время одного полного оборота).
Кинематическое уравнение равнопеременного вращения (ε=const):
,
где
- начальная скорость; t – время.
Угловая скорость тела при равнопеременном вращении:
.
Связь между линейными и угловыми величинами, характеризующими вращение материальной точки, выражается следующими формулами:
(где
– угол поворота тела) – длина пути, пройденного точкой по дуге окружности радиусом R;
,
– линейная скорость точки;
,
– тангенциальное ускорение точки;
– нормальное ускорение точки.
Рис. 1.
;
;
,
где R – радиус кривизны в данной точке траектории.






