Гипербола

Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек плоскости F1 и F2, называемых фокусами, есть величина постоянная, равная .

 
 

Точки F1 и F2 имеют координаты F1 (c, 0) и F2(-c, 0).

Пусть точка М (х,у) – некоторая точка плоскости. Обозначим через r1 и r2 расстояния от точки М до точек F1 и F2 соответственно. Согласно определению гиперболы равенство:

|r1-r2|=2a

является необходимым и достаточным условием расположения точки М (х,у) на данной гиперболе.

Уравнение гиперболы в данной системе координат примет вид:

- каноническое уравнение гиперболы,

где b2=c2-a2.

Если а=b, то гипербола называется равносторонней.

Свойства гиперболы.

1) Гипербола симметрична относительно осей Ох и Оу и точки О (0;0) – центра гиперболы.

2) Гипербола состоит из двух частей, называемых ветвями гиперболы.

Точки пересечения гиперболы с осью Ох А1 (а; 0) и А2 (- а; 0) называются вершинами гиперболы.

Отрезок А1А2=2а называется действительной осью гиперболы.

3) Прямые и называются асимптотами гиперболы ( ветви гиперболы неограниченно приближаются к этим прямым).

Отношение расстояния между фокусами к длине действительной оси эллипса называется эксцентриситетом гиперболы:

е=с/а.

Учитывая, что b222, получим:

.

Из этой формулы видно, что эксцентриситет гиперболы больше единицы.

Эксцентриситет гиперболы можно рассматривать как числовую характеристику величины угла между ее асимптотами, т.к. отношение есть тангенс половины угла между асимптотами гиперболы.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: