Принципиальное различие диссипативных и антидиссипативных процессов заключается в их противоположном направлении движения

"Природные процессы живого вещества увеличивают свободную энергию. Все природные процессы в области естественных косных тел (за исключением явлений радиоактивности) уменьшают свободную энергию среды" (В.Вернадский, 1935 г.).

В этом месте мы хотели бы высказать свое отношение к бытующему мнению о том, что до сих пор явлений Жизни в Космосе не обнаружено. Мы хотим сказать, что здесь происходит подмена понятий явлений Жизни как таковых на явления Земной Жизни. Да, на других планетах не обнаружено явлений Земной Жизни. Но кто-нибудь может утверждать, что в Космосе отсутствуют антидиссипативные процессы, которые и являются сущностью Жизни как космического явления. Явления Земной Жизни лишь одна из многочисленных форм антидиссипативных процессов.

В этом случае становится ясным и прозрачным трудно понимаемый принцип Рэди: "Все живое происходит от живого". Это значит, что одна форма анти-диссипативного процесса переходит в другую форму того же антидиссипативного процесса.

И все эти процессы управляются единым принципом устойчивой неравновесности и определяют физику эволюции живых систем.

26. Неустойчивое равновесие

Уравнение с ограничением для третьего типа можно рассматривать как неустойчивое равновесие внешних и внутренних потоков. Неустойчивое равновесие возникает, когда в результате доминирования процессов диссипации растет мощность потерь, а поток свободной энергии уменьшается. В предельном случае полная мощность может стать равной мощности потерь N = G.

Внешние и внутренние потоки оказались уравновешенными. Открытая неравновесная система с размерностью [L5T-5] временно переходит в класс закрытых равновесных систем с меньшей пространственно-временной размерностью [L5T-4], а при определенных условиях и с еще меньшей размерностью. Такой тип неустойчивого равновесия мы назовем КРИТИЧЕСКОЙ СИТУАЦИЕЙ ПЕРВОГО РОДА.

Принципиальным условием ее возникновения является равенство входного N и выходного G потоков.

Принципиальным следствием этой ситуации является переход системы в другой класс с меньшей размерностью и временной потерей внешней работоспособности.

Однако, этот класс является частным случаем и система стремится влиться в общий поток с большей пространственно-временной размерностью. И как это ни парадоксально равенство потоков способствует этому. Возникает резонанс - необходимое условие энергетического взаимодействия и протекания фотохимических эндотермических реакций. Тем не менее, для восстановления способности совершать внешнюю работу необходимо, чтобы входной и выходной потоки не были уравновешены, то есть нужно, чтобы N-G¹0.

Выполнение этого условия возможно обеспечить двумя способами: а) либо увеличением входного потока N, б) либо уменьшением мощности потерь G.

Входной поток не увеличивается, а мощность потерь может быть уменьшена только за счет повышения эффективности преобразования полной мощности N. Необходима реализация функции положительной обратной связи. Только в этом случае может осуществиться цикл, и система перейдет на другой более высокий пространственно-временной уровень с размерностью [L5T-5]. Именно эту функцию и обеспечивают устойчиво неравновесные процессы. Возможен и другой тип неустойчивого равновесия, когда в результате роста потока свободной энергии и уменьшения мощности потерь в пределе может сложиться ситуация равенства входного потока N и выходного Р.

В результате этого система теряет способность совершать внешнюю работу, что также переводит ее в класс закрытых систем. Такой класс неустойчивого равновесия мы называем КРИТИЧЕСКОЙ СИТУАЦИЕЙ ВТОРОГО РОДА.

Принципиальной особенностью этой ситуации является то, что здесь достигнут предел роста в рамках определенного пространства. Выйти из критической ситуации за счет повышения эффективности потребления N принципиально невозможно.

Для сохранения способности совершать внешнюю работу возможен только один способ: увеличение прироста полной мощности за счет расширения пространственно-временных границ системы. Необходим переход на другой виток развития с большей пространственно-временной размерностью, выше [L5T-5], например в [L6T-6].

Существует еще один тип неустойчивого равновесия, связанный с необходимостью ускорения способности совершать работу, увеличением темпов роста активной мощности, то есть увеличением временной размерности частотных характеристик. Такая ситуация возникает по причине неравномерности распределения источников мощности и, как следствие, неравномерности роста активной мощности различных устойчиво неравновесных систем (включая социальные системы), появление конкурирующих систем.

Рассогласование в скорости роста активной мощности конкурирующих систем порождает КРИТИЧЕСКУЮ СИТУАЦИЮ ТРЕТЬЕГО РОДА. Ее принципиальная особенность - временное равенство мощностей конкурирующих систем. В конкурентной борьбе побеждает та система, которая обеспечивает больший темп роста активной мощности.

Итак, существуют три типа неустойчивого равновесия. Их функциональное назначение состоит в сохранении мощности в условиях критических ситуаций. Это достигается переходом системы в другое пространственно-временное измерение. Последнее означает переход в другое пространство (с другими геометрическими свойствами) и другое время (с другим частотными спектром). В процессе взаимодействия диссипативных и антидиссипативных процессов и осуществляется переход с одного пространственно-временного уровня иерархии на другой.

27. Механизм устойчивой неравновесности

Из закона сохранения мощности следует принципиальная схема (рис. 3.8). Здесь показаны два сопряженных процесса неэквивалентного обмена потоками энергии между любой живой системой и ее средой, именуемого процессом жизнедеятельности. Любая живая система как физический процесс является истоком и стоком свободной энергии.

Рис. 3.8. Минимальная порождающая схема устойчивой неравновесности

Выполняя внешнюю работу Р, живая система через toc получает потребляемый поток N, который она использует в течение tжс для обеспечения своей жизнедеятельности с определенным КПД<=h<=1. Отношение N к Р есть мера неэквивалентного обмена x>1, характеризующая способность системы к воспроизводству. В первом приближении условия устойчивой неравновесности могут быть записаны в виде скалярных уравнений:

N(t+toc)=P(t)*x,

P(t+toc+tжс)=Т(t+toc)*h (3.27)

Решением этих уравнений является выражение:

, [L5T-5],

где g=x*h - эффективность полной мощности N, а toc+tжс=t0 (период цикла) [L0T-1]; переход на новый цикл означает увеличение скорости оборачиваемости, то есть увеличение частоты. Поэтому полученное выражение может быть представлено как волновой процесс:

, [L5T-5], (3.28)

где B0 - амплитуда [L5T-4]; - - частота [L0T-1].

Отсюда следуют условия устойчивой неравновесности:

  1. необходимым условием является выполнение фундаментального неравенства: N > G;
  2. достаточным условием устойчивой неравновесности является ускорение роста свободной энергии за счет повышения эффективности полной мощности, то есть повышения скорости ее оборачиваемости с уменьшением мощности потерь на каждом цикле процесса.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: