Квазиоптические направляющие системы

В диапазоне сантиметровых волн в качестве канализирующих систем широко применяются прямоугольные и круглые металлические волноводы. Размеры волноводов выбираются из условия существования одноволнового режима. Но при длинах волн короче 1-2 мм эти волноводы применять нельзя, так как возрастают тепловые потери в стенках волноводов и повышаются технологические трудности изготовления волноводов. Рост затухания на высоких частотах объясняется уменьшением толщины поверхностного слоя, что ведет к росту сопротивления металлических стенок, причем коэффициент затухания увеличивается пропорционально . Например, если выбрать размеры прямоугольного волновода из условия распространения в нем только волны , то при мм коэффициент затухания становится равным 120 дБ/м, т.е., совершенно неприемлемой величине.

Увеличение поперечных размеров волновода позволяет уменьшить коэффициент затухания, но режим становится многоволновым, что приводит искажению передаваемого сигнала.

Указанные обстоятельства приводят к тому, что на волнах миллиметрового и субмиллиметрового диапазонов волн используются линзовые и зеркальные линии передачи − лучевые волноводы, называемые также квазиоптическими линиями передачи.

Линзовая линия состоит из периодически расположенных на общей оси длиннофокусных диэлектрических линз (рисунок 49).

Рисунок 49 − Линзовая линия

Если расположить в фокусе первой линзы облучатель, то возбуждаемое им электромагнитное поле падает на линзу, линза фокусирует падающее поле, далее оно распространяется к следующей линзе. Если бы законы геометрической оптики выполнялись точно, то каждая линза формировала бы сходящийся пучок лучей, который попадал бы на следующую линзу. Однако полностью сходящийся пучок не формируется, и часть энергии на соседнюю линзу не попадает, что приводит к радиационным потерям (потерям на излучение). Другим недостатком линзовых линий являются потери в линзах − часть энергии отражается от поверхности линз, часть рассеивается внутри линзы, превращаясь в тепло. Свободными от таких потерь являются зеркальные линии (рисунок 50).

Рисунок 50 − Зеркальная линия

В зеркальной линии электромагнитное поле источника падает на изогнутое зеркало. Линия состоит из периодически расположенных зеркал. Каждое зеркало подобно линзе фокусирует падающий на нее пучок и передает его на следующее зеркало. Уравнения для расчета линии можно получить методами геометрической оптики. Недостатком простой зеркальной линии является большая чувствительность к юстировке, в частности, к перекосу зеркал. Большей устойчивостью в этом смысле обладают перископические зеркальные линии, в которых два зеркала жестко скреплены друг с другом.

Замедляющие системы

Ранее мы рассматривали волноводные линии передачи, в которых фазовая скорость распространения колебаний была равна скорости света или превосходила ее. Однако для нужд электроники СВЧ часто требуются волноводные системы, в которых фазовая скорость была бы меньше скорости света: . Медленные электромагнитные волны находят широкое применение электронных приборах СВЧ: лампах бегущей и обратной волн, линейных ускорителях частиц и других приборах. Так, например, в лампе бегущей волны электроны движутся по прямой со скоростями . Для обеспечения длительного взаимодействия электромагнитной волны с электронами ее фазовая скорость должна быть близка к скорости электронов.

Отношение фазовой скорости направляемой электромагнитной волны к скорости света в свободном пространстве называются коэффициентом замедления направляющей системы . Для электронных приборов СВЧ он требуется в пределах от 0,3 до 0,02, для линейных ускорителей − несколько меньше единицы.

В технике СВЧ широкое применение находят цельнометаллические замедляющие системы, не содержащие диэлектриков. Одной из них является спиральный волновод, показанный на рисунке 51.

Рисунок 51 − Спиральный волновод

Данная замедляющая система представляет собой достаточно тонкий проводник, навитый на круглый цилиндр радиуса по винтовой линии с некоторым постоянным шагом . Строгая теория спирального волновода довольно сложна, однако для приближенного определения коэффициента замедления достаточно положить, что вдоль провода спирали распространяется волна тока со скоростью, приблизительно равной скорости света в вакууме. Поскольку путь тока вдоль провода значительно превышает проекцию этого пути на ось спирали, фактическая скорость распространения колебаний вдоль волновода уменьшается по сравнению со скоростью света. Длина одного витка спирали находится из его развертки на плоскость: . Очевидно, что коэффициент замедления равен отношению пути, который проходит волна вдоль оси спирали, к пути тока вдоль спирали: . Фазовая скорость волны вдоль оси направляющей системы:

.

Отметим, что данные равенства верны только при , в противном случае волны «перескакивают» с витка на виток и коэффициент замедления становится функцией частоты.

Примером применения спирального волновода является лампа бегущей волны (ЛБВ), которая применяется для усиления или генерирования СВЧ колебаний. Схематическое устройство лампы показано на рисунке 52.

Рисунок 52 − Лампа бегущей волны

Электронная пушка формирует электронный пучок с определенным сечением и интенсивностью. Скорость электронов определяется ускоряющим напряжением таким образом, чтобы она была равнялась фазовой скорости волны в замедляющей системе: . В замедляющую систему подается усиливаемый сигнал. При движении пучка электронов вдоль оси лампы часть его кинетической энергии передается электромагнитной волне, распространяющейся вдоль спирального волновода при условии синхронизма между электронным потоком и распространяющейся волной. При этом происходит усиление СВЧ сигнала.

Важно отметить, что коэффициент замедления, и, следовательно, фазовая скорость волны в спиральном волноводе не зависит от частоты и зависит только от геометрии спирали. Это свойство обеспечивает работу ЛБВ в широкой полосе частот. Коэффициент усиления ЛБВ при неизменном ускоряющем напряжении может оставаться почти неизменным в широкой полосе частот — порядка 20—50 % от средней частоты.

Помимо спирального волновода, применяются гребенчатая замедляющая структура, представляющая собой металлическую поверхность с прямоугольными канавками глубиной не более (рисунок 53). Замедление происходит при распространении электромагнитной волны в направлении, перпендикулярном канавкам.

Рисунок 53 − Гребенчатая замедляющая структура

Физическая природа замедления заключается в следующем. Каждый отдельный период структуры может рассматриваться как некоторая колебательная система, обладающая конечным временем установления колебаний. В случае гребенчатого волновода такой колебательной системой является отдельная канавка, которая может рассматриваться как закороченный на конце отрезок длинной линии с волной типа ТЕМ. Для достижения установившейся амплитуды колебаний требуется конечный отрезок времени, тем больший, чем ближе размеры системы к резоснансным, т.е. с приближением глубины канавки к значению . Упрощенный теоретический анализ гребенчатой замедляющей системы показывает, что справедлива следующая простая формула для коэффициента замедления:

.

Объемные резонаторы

В радиотехнике самое широкое применение нашел колебательный контур, состоящий из сосредоточенных индуктивности и емкости. Общей чертой всех подобных систем является то, что их геометрические размеры значительно меньше резонансной длины волны.

Уже при переходе к волнам дециметрового диапазона было отмечено резкое падение колебательных свойств, в частности, добротности у колебательных контуров, построенных на сосредоточенных элементах. При- чина этого заключается в следующем. Как известно, для повышения резонансной частоты приходится уменьшать величины индуктивности и емкости контура. Поэтому в пределе от обычного контура переходят к системе, в которой конденсатор представляет собой две пластины, а роль индуктивности играет виток, соединяющий последние (рисунок 54). Однако при таком переходе существенно уменьшается величина энергии электромагнитного поля, запасаемой в системе. Наряду с этим относительная доля активных потерь в контуре возрастает, что связано, например, с ростом омического сопротивления проводников на высоких частотах из-за поверхностного эффекта. Если к суммарным потерям контура добавить еще те, которые неизбежно возникают ввиду излучения электромагнитной энергии, становится ясным, что добротность колебательной системы падает.

Рисунок 54 − Переход от колебательного контура с сосредоточенными элементами к тороидальному резонатору

Мера, позволяющая отчасти избежать падения добротности, состоит в том, что индуктивный виток заменяется сплошной металлической поверхностью (рисунок 54), которую можно рассматривать как предельный случай параллельного включения большого числа отдельных витков. При этом, с одной стороны, уменьшается индуктивность системы, что благоприятно сказывается при продвижении в более высокочастотные области спектра. С другой стороны, величина электромагнитной энергии, запасенной внутри тороидальной полости, значительно больше, чем энергия в одиночном нитке. По этой причине возрастает добротность.

Электромагнитные колебательные системы, представляющие собой замкнутые объемы с проводящими стенками, носят название объемных резонаторов. Сюда относится, в частности, рассмотренный тороидальный объемный резонатор, нашедший по ряду причин широкое применение в технике СВЧ.

Однако даже переход к замкнутым конструкциям типа тороидального объемного резонатора не позволяет успешно разрешить всех трудностей, связанных с построением высокодобротных колебательных систем СВЧ. Дело заключается в том, что подобные системы являются прямыми аналогами обычного колебательного контура и поэтому объем их неизбежно сокращается с повышением резонансной частоты. Как следствие, при этом уменьшается запасенная энергия и падает добротность.

Принципиально другой, более прогрессивный путь создания колебательных систем СВЧ состоит в использовании резонансных свойств отрезков линии передачи с малыми потерями.

Рассмотрим полубесконечную двухпроводную линию, короткозамкнутую на конце, вдоль которой могут распространяться волны типа ТЕМ (рисунок 55). Как известно, в такой системе установится стоячая волна, причем амплитуда суммарного напряжения будет определяться граничным условием в точке короткого замыкания:

при .

Рисунок 55 − Распределение тока и напряжения в короткозамкнутой линии

Нетрудно видеть, что подобные условия будут выполняться также во всех точках оси , удовлетворяющих соотношению

где — целое положительное число. Отсюда следует, что если взять замкнутый с обоих концов отрезок линии длиной , то получим колебательную систему, причем можно показать, что ее частотная характеристика вблизи резонансной частоты будет в точности соответствовать частотной характеристике обычного колебательного контура. Эскиз подобной системы и ее эквивалентная схема представлены на рисунке 56.

Принципиально важно отметить, что рассматриваемая здесь система обладает не сосредоточенными, а распределенными постоянными. Ввиду этого эквивалентную схему следует понимать как условную.

Из последнего уравнения следует, что короткозамкнутый отрезок линии передачи, в отличие от простого колебательного контура, обладает бесконечным множеством резонансных длин волн, определяемых формулой

.

Физически это соответствует тому, что вдоль линии могут укладываться одна, две, три и т. д. стоячие полуволны. Подобное свойство характерно для любых колебательных систем с распределенными постоянными.

Рисунок 56 − Колебательная система, образованная отрезком длинной линии и ее эквивалентная схема

На описанном принципе могут быть созданы объемные резонаторы, представляющие собой короткозамкнутые отрезки прямоугольных или круглых металлических волноводов Отличие таких систем от рассмотренного отрезка двухпроводной линии состоит в следующем:

1. вследствие частотной дисперсии система резонирует не на кратных частотах;

2. возможно установление стоячих волн по всем трем координатным осям.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: