Применение метода статистических испытаний для анализа влияния случайных погрешностей исходной информации и реализации результатов расчета устойчивости на ЦВМ

9.5.1. Анализ устойчивости энергосистем должен проводиться с учетом случайных отклонений (погрешности) исходных данных, принятых для расчета, от фактических значений. Необходимо учитывать также, что при реализации результатов расчета неизбежны случайные отклонения фактических значений параметров режима энергосистемы от значений, фиксируемых с помощью измерительных устройств. Эти отклонения вызываются погрешностью измерений (погрешности измерительной и преобразовательной аппаратуры -трансформаторов тока и напряжения, каналов телепередачи и т.п.). Влияние этих случайных погрешностей в многочисленных звеньях энергосистемы должно определяться с учетом вероятности как взаимной компенсации, так и взаимного усиления, так как отклонения могут иметь разные знаки. Для решения этой задачи целесообразно применять метод статистических испытаний [Л.65-68], который при использовании ЦВМ является практически выполнимым. В соответствии с этим методом на ЦВМ многократно повторяется расчет по детерминистически построенной основной подпрограмме анализа устойчивости, но для каждого расчета по дополнительным подпрограммам производится вариация случайными числами вводимых исходных данных. Эта вариация производится в пределах, заданных для каждого параметра или для групп параметров, при заданных законах распределения вероятности. Результаты многократно повторяемых детерминистических расчетов обрабатываются специальной подпрограммой по методам математической статистики, при этом выполняется минимально необходимое для представительности статистики количество повторяемых расчетов. Таким образом, осуществляется статистическое моделирование на ЦВМ необходимого числа "испытаний" при случайной вариации различных параметров*.

________________

* Случайные числа, необходимые при решении задачи, целесообразно вырабатывать с помощью специальных подпрограмм на ЦВМ.

Для различных ЦВМ имеется большая библиотека подпрограмм датчиков псевдослучайных чисел (ПДСЧ) с различными законами распределения (равномерный, нормальный, биномиальный и т.д.). В связи с многомерностью задач анализа устойчивости энергосистем и ограниченной поэтому возможностью проведения большого числа испытаний на ЦВМ, к ПДСЧ предъявляются повышенные требования. Кроме проверки их по стандартным тестам, желательно проверять с заданной доверительной вероятностью предельные отклонения статистических характеристик выборок из ПДСЧ по числу варьируемых исходных параметров, а также оценивать независимость этих выборок. [Л.67].

9.5.2. Диапазон отклонений значений, принимаемых для расчета, от возможных фактических параметров, а также законы распределения отклонений следует определять предварительным анализом статистических данных, если они имеются. При отсутствии статистики (во многих случаях имеется еще недостаточное количество данных) необходимо принимать во внимание особенности отклонений параметров различного типа. Погрешности измерений сложными измерительными устройствами подчиняются, как правило, нормальному закону. Параметры элементов энергосистем, используемые в расчетах устойчивости, большей частью не измеряются непосредственно, а вычисляются с помощью исходных величин, определяемых экспериментально. В этом случае диапазон отклонений и закон распределения отклонений параметров зависят от количества исходных величин, по которым они определяются, от вида функциональной связи между ними, от ошибок исходных величин. При полном отсутствии экспериментальных данных по каким-либо параметрам (прогнозируемая нагрузка, проектные длины линий) диапазон отклонений следует задавать ориентировочно на основании соображений о возможных отклонениях таких параметров. Распределение отклонений для подобных параметров можно принимать равномерным.

Следует учитывать, что степень влияния погрешностей исходных параметров на результат расчета устойчивости неодинакова.

Все исходные для расчета параметры можно разделить на "существенные" - изменение которых в заданных границах существенно сказывается на результаты расчета, и "несущественные" - изменение которых в меньшей (заданной) степени, по сравнению с первыми, влияет на результат. "Несущественные" параметры можно задавать в расчетах фиксированными. К точности определения "несущественных" параметров можно не предъявлять высоких требований.

9.5.3. Количество возможных комбинаций отклонений параметров может быть очень велико. Чтобы уменьшить число вариаций (имитирующих случайные отклонения) исходных параметров, а значит, и затраты машинного времени, следует определять минимально необходимое число испытаний (реализаций), при котором получаются достоверные результаты анализа с необходимой точностью.

9.5.4. Получаемая посредством многократных расчетов устойчивости энергосистемы совокупность случайных значений результата расчетов должна быть подвергнута статистической обработке, в результате которой может быть получен ее закон распределения (в графическом или аналитическом виде) и числовые характеристики с оценкой их относительной погрешности: среднее значение, дисперсия, коэффициент вариации, вероятность нарушения устойчивости и др. [Л.65-68].

При оценке влияния погрешности исходной информации в расчетах устойчивости необходимо задавать погрешность исходных данных, начиная с расчета доаварийного режима, поскольку его параметры оказывают существенное влияние на результаты анализа устойчивости.

9.5.5. Расчеты устойчивости энергосистем при учете погрешности исходной информации следует выполнять на ЦВМ с помощью комплексов программ, включающих основные серийные или эталонные программы расчета установившегося электрического режима, динамической или статической устойчивости, блоки вариации исходных данных и статистической обработки результатов счета. Основные программы модифицируются для сокращения объема печати при многократных расчетах и для осуществления связи с программой статистической вариации.

При вероятностной оценке влияния погрешности исходных данных нет необходимости получать в каждом расчете такую же полную информацию об устойчивости режима, как в детерминистическом расчете. Например, при анализе динамической устойчивости с учетом неточности исходных данных не нужно полностью выводить на печать все кривые изменения относительных углов роторов синхронных машин, а достаточно в поставленной задаче определить лишь, например максимальные или минимальные значения относительных углов; в расчетах статической устойчивости не нужно находить границы областей устойчивости, а лишь ее размеры. Полная информация о результатах расчета устойчивости при необходимости получается после оценки влияния погрешности исходных данных путем использования немодифицированной основной программы.

9.5.6. Сопоставление результатов расчетов между собой (например, при сравнении более точного и упрощенных методов), а также с данными опытов следует связывать оценками типа "разница находится (или не находится) в пределах точности исходных расчетных данных и точности измерения".

Эта оценка до последнего времени делалась весьма ориентировочно и большей частью основывалась лишь на инженерной интуиции. Метод статистических испытаний на ЦВМ дает возможность получить расчетно-аналитическое обоснование этой оценки при учете влияния неточности исходной информации на результаты расчета устойчивости энергосистем и неточности измерений при реализации результатов этих расчетов. При выборе метода анализа устойчивости энергосистем слезет также иметь в виду и чувствительность методов к вариации параметров расчета. Эта чувствительность может оказаться разной для различных методов и алгоритмов, несмотря на то, что они полностью эквивалентны при однозначном представлении исходных данных. Применение метода статистического моделирования на ЦВМ дает возможность исследовать чувствительность различных методов (алгоритмов) анализа устойчивости энергосистем в статистическом плане, без детального изучения внутренней структуры метода.

Указанные расчеты в основном должны иметь характер типовых, чтобы не было необходимости выполнять их в полном объеме для каждого конкретного случая.

Пример расчета динамической устойчивости на ЦВМ с учетом влияния случайной погрешности исходной информации приведен в приложении 17.

9.5.7. Обоснование нормативных показателей устойчивости энергосистем должно производиться с помощью статистико-вероятностных методов анализа, поскольку число, вид, место и длительность нарушения устойчивости в энергосистеме, а также погрешность реализации результатов расчетов являются случайными величинами. При определении нормативных показателей с помощью вероятностных характеристик, полученных в результате вероятностного анализа устойчивости, необходимо учитывать случайную погрешность исходных данных как в анализе устойчивости, так и в технико-экономических расчетах, в которые наряду с капиталовложениями и эксплуатационными расходами войдет и народнохозяйственный ущерб от перерывов электроснабжения.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: