Тема 9: функциональный анализ органических лекарственных веществ

Блок информации

В органическом качественном анализе различают элементный анализ, предназначенный для обнаружения элементов в органических соединениях, функциональный – функциональных групп и молекулярный – отдельных веществ по особым свойствам молекул или сочетанию данных элементного и функционального анализа и физических констант.

Аналитические реакции неэлектролитов основаны не на взаимодействии ионов, а на химических свойствах органических соединений, учитывая наличие в молекуле тех или иных функциональных групп. В результате взаимодействия органического соединения с тем или иным реагентом образуются новые вещества, отличающиеся характерными свойствами (цвет, запах, вкус, определённые физические константы – температура плавления, кипения и т.д.) и по этим свойствам судят о подлинности соединения.

В некоторых случаях для аналитических целей имеют значение не столько реакции самой функциональной группы, сколько влияние группы на реакционную способность молекулы в целом. Например, наличие –ОН, NH2 и др. групп в ароматических соединениях, как известно, обусловливает лёгкость вхождения галогена в ядро, приводящее к образованию новых производных.

Многие качественные реакции органических соединений является цветными и сопровождаются получением цветных соединений. Большинство цветных реакций органических соединений основано на получении продуктов с хромофорными группами, образующихся при окислительно-восстановительных и комплексообразовательных реакциях. Реже качественное обнаружение органических соединений базируется на образовании осадков. Цветные реакции применяются для обнаружения элементов, функциональ­ных групп, отдельных видов молекул, на их основе созданы методы фотометрического определения органических соединений. Цветные реакции проводят в неводной и водной среде, используя реактивы как органического, так и неорганического происхождения.

Цветные реакции органических соединений могут быть класси­фицированы следующим образом:

1. Обнаружение по собственному поглощению (цвету) органических соединений, которым в области 400—800 нм (в видимой области спектра) обладают органические соединения с функциональ­ными аналитическими группировками хромофорного типа — сопряженными двойными связями, азо-, нитро-, нитрозо-, тиогруппами и др.

2. Образование молекулярных соединений, обладающих цветом или флюоресценцией. При этом происходит сильное смещение УФ-полос поглощения веществ в видимую область спектра, что приводит к образованию видимого глазом цвета.

3. Образование цветных соединений ионного типа. Многие органические соединения обладают кислотными свойствами и могут ионизировать. При этом образуются крупноразмерные малозарядные ионы, способные вследствие высокой поляризуемости легко связываться в труднорастворимый осадок, экстрагироваться в виде ионных пар, вступать в твердофазные реакции. Например, основные красители типа кристаллического фиолето­вого образуют с хлоридными комплексами сурьмы (V) экстрагирующиеся ионные ассоциаты, обладающие в органической фазе характерным цветом.

4. Изменение цвета при ионизации веществ. Ионизация приводит к образованию неподеленной пары электронов, которая воздействует на систему сопряженных π-связей и приводит к химическим превращениям молекулы. Например, фенолфталеин в щелочной среде по этим причинам приобретает фиолетовый цвет.

5. Образование окрашенных комплексных соединений с неорга­ническими ионами. Подобные реакции проводят с органическими соединениями, имеющими функциональные аналитические группировки, включающие электронодонорные атомы О, N, S, Р и др. Особенно большой эффект появляется при проведении реакций комплексообразования с органическими веществами, в комплексах которых координационная связь сопряжена с системой π-связей вещества. Например, 8-оксихинолин, фенолы, азосоединения и другие вещества образуют комплексы с характерной яркой окраской благодаря такому сопряжению. Образовавшаяся координационная связь вызывает расщепление π-орбиталей органического вещества, облегчая тем самым π — π*-переход электронов под воздействием квантов лучей видимой области спектра.

6. Введение в молекулу органических соединений хромофорных групп, содержащих π-связи: азо, нитрозо, нитро и др. Если в молекуле бесцветного органического вещества имеются π-связи и при введении хромофорных групп образуется система сопряженных π-связей, то у вещества может появиться цвет вследствие сдвига полос поглощения вещества из ультрафиолетовой области в видимую. На этом принципе основано, например, обнаружение ароматических аминов с помощью реакций диазотирования и азо-сочетания. Образующаяся при этом азогруппа сопряжена с системой π-связей бензольного кольца, что приводит к появлению цвета.

7. Окислительно-восстановительные реакции, приводящие к образованию в молекулах веществ хромофорных групп типа сопря­женных двойных связей. Например, при окислении гидразосоединений R—NH—NH—R образуются азосоединения R—N=N—R, обладающие характерной окраской. Большинство цветных реак­ций органических соединений протекает по описанным механизмам.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: