Макромир. Механическая картина мира. Представления о структуре и уровнях строения материи. Концепция о двух видах материи

Механический подход к описанию природы оказался необычно плодотворным. На основе ньютоновской механики были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и ряд других теорий. Физика как наука достигала огромных успехов в своем развитии и заняла лидирующее положение среди других наук.

Два представления о структуре материи были сформулированы примерно 2500 лет назад в античной натурфилософии: атомистическая концепция Демокрита (Демокрит, ок. 469-370 до. н.э.) и континуальная доктрина Аристотеля (Аристотель, 384-322 до н.э.). По первому представлению материя делима до определенного предела – до атомов, которые могут соединяться различными способами и порождают все многообразие объектов и явлений реального мира. По Демокриту мир образован двумя фундаментальными началами – атомами и пустотой, а материя обладает атомистической структурой

Данные представления о структуре материи просуществовали вплоть до начала XXв. Атомы рассматривались как плотные образования материи, как предел физического его деления. В рамках атомистической концепции строения материи была развита классическая механика Ньютона, которая доминировала в описании природы вплоть до начала XX в.

В конце XIX в. после создания Дж. Максвеллом теории электромагнетизма выяснилось, что материя предстает в виде двух форм: дискретного вещества и непрерывного поля.

Вещество и поле различаются по своей сущности:

· вещество дискретно и состоит из атомов, а поле непрерывно,

· вещество обладает массой, а поле – нет,

· вещество мало проницаемо, а поле полностью проницаемо,

· скорость движения вещества v<< с (с = 300000 км/с – скорость света), скорость распространения поля равна с.

Но открытия в физике в конце XIX – начале XX века в итоге привели к созданию квантовой механики, которая фактически разрушила представления классической физики о веществе и поле как двух качественно своеобразных видах материи.

де Бройль, показал, что не только световые волны обладают дискретной структурой, но и микрочастицам вещества присущ волновой характер (т.н. корпускулярно-волновой дуализм).

Согласно же представлениям современного естествознания на природу, все природные объекты представляют собой упорядоченные, структурированные и иерархически организованные системы.

В неживой природе в качестве структурных уровней организации материи выделяют: элементарные частицы, атомы, молекулы, поля, физический вакуум, макроскопические тела, планеты и планетные системы, звезды и звездные системы – галактики, системы галактик – метагалактику.

В современном естествознании выделяют три уровня строения материи.

Микромир – мир предельно малых, непосредственно не наблюдаемых микрообъектов от 10-8 до 10-15 см, а время жизни – от бесконечности до 10-24 с.

Макромир – мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в мм, см, м, км, а время в с, мин, час, год.

Мегамир – мир огромных космических масштабов и скоростей, расстояние в котором измеряется в парсеках или световых годах, время существования объектов миллиарды лет.

 

Микромир. Квантово-полевая картина мира

Квантовая механика – это полная загадок и парадоксов дисциплина, которую мы не понимаем до конца, но умеем применять.

Гелл-Манн

 

Атомная физика

В конце XIX в. начале XX в. физика выходит на уровень исследования микромира. Научные открытия этого периода опровергают представления об атомах как последних и неделимых структурных элементах материи.

В 1895 г. Дж. Дж. Томсон (1856-1940) открывает электрон – отрицательно заряженную частицу, входящую в состав всех атомов (определяется масса и величина заряда электрона). Французский физик А.А. Беккерель (1852-1908) открывает явление радиоактивности (1896 г.): случайно обнаруживает при изучении люминесценции, что соли урана излучают без предварительного освещения. Радиоактивное излучение представляет собой самопроизвольное превращение неустойчивых ядер атомов в результате ядерных излучений (альфа-, бета-, гамма-лучей, открытых позднее) в другие ядра химических элементов. Французские физики Пьер и Мария Кюри, изучая явление радиоактивности, открывают новые элементы – полоний и радий.

Первые модели атома появились в 1904 г.: японский физик Хантаро Нагаока (1865-1950) представил строение атома аналогичным строению Солнечной системы – положительно заряженная часть атома – Солнце, вокруг которой по кольцеобразным орбитам движутся электроны, как планеты вокруг Солнца. В модели Дж. Томсона положительное электричество было «распределено» по сфере, в которую вкраплены электроны.

Опыты английского ученого Э. Резерфорда (1871-1937) с альфа-частицами (масса альфа частицы примерно составляет 8000 масс электрона) привели к открытию ядра в атоме (1912 г.) – положительно заряженной частицы, размером порядка 10-14 м, в которой фактически сосредоточена вся масса атома (размер же самого атома составляет 10-10 м). Тем самым опыты Резерфорда опровергли модель атома Томсона и подтвердили планетарную модель атома Нагаока.

Однако планетарная модель атома Резерфорда противоречила законам электродинамики Максвелла, т.к. по законам электродинамики вращающийся вокруг ядра электрон должен был излучать электромагнитные волны, теряя энергию на излучение, электрон должен «упасть на ядро», а атом «прекратить» свое существование. Но в действительности этого не происходит, атомы устойчивы и могут существовать, не излучая электромагнитных волн.

Датский физик Н. Бор (1885-1962) устраняет возникшее противоречие, выдвижением двух знаменитых постулатов в 1913 г. (постулаты Бора), ставшие основой принципиально новых теорий микромира – квантовой механики и квантовой электродинамики. Свои постулаты он обосновывает идеей М. Планка о существовании квантов электромагнитного поля, развитой затем А. Эйнштейном.

Но теория Бора фактически была теорией для одного атома – атома водорода. К тому же Н. Бор не объяснил свои знаменитые постулаты, постулаты «сделали атом водорода устойчивым, запретив излучать электромагнитные волны в стационарном состоянии». Теория Бора не могла описывать многоэлектронные атомы, и это связано с волновыми свойствами электрона.

 

Квантовая механика

При изучении микрочастиц ученые обнаружили у них особенность обладать как волновыми, так и корпускулярными свойствами. В конце XIX века в физике возникла ситуация, получившая название «ультрафиолетовая катастрофа». Немецкий физик-теоретик Макс Планк (1858- 1947), исследуя тепловое излучение, приходит к выводу, что в процессе излучения энергия может быть отдана или поглощена не непрерывно и не в любых количествах, а лишь в неделимых порциях – квантах. Энергия каждой такой порции вычисляется по формуле:

E = или E = hω

где h – постоянная Планка, ν – частота колебаний.

Введенное Планком 14 декабря 1900 г. представление об излучении порциями (квантами) стало фундаментом для создания квантовой теории (термин «квантовая механика» ввел М. Планк), считается днем рождения квантовой теории и началом новой эры естествознания (Нобелевская премия по физике М. Планку была присуждена в 1918 г.).

Идея Планка получила развитие в работах А. Эйнштейна (1879-1955), в 1905 г. он переносит идею квантования на излучение вообще и вводит понятие дискретности света, т.е. приходит к признанию корпускулярной структуры света: свет - это поток квантов (фотонов). Эйнштейновское представление о световых квантах (фотонах) стало основой для создания им же теории фотоэффекта, суть которой заключается в выбивании электронов из вещества под действием электромагнитных волн. За правильность толкования фотоэффекта А. Эйнштейн получил Нобелевскую премию (1921 г.). (Работы Столетова)

Теория фотоэффекта была успешно подтверждена экспериментально амер. физиком Р. Милликеном (1868-1953), за что он тоже получил Нобелевскую премию (1923 г.).

В 1926 г. австрийский физики Э. Шредингер (1887-1961) создал математическую волновую модель атома в виде волнового дифференциального уравнения Шредингера

d  2 mEU (x) (x)  0

dx h,

Е и U(x) – соответственно полная и потенциальная энергия частиц, m – масса частиц, h - по- стоянная Планка,  (х) – волновая функция, определяющее поведение волн материи.

Причем волновая функция  (х) не позволяет абсолютно точно определить положение электронов в атоме, они расплываются в некое «облако» и можно говорить лишь о вероятности нахождения электронов в том или ином месте атома, которая характеризуется квадратом ам

2
плитуды волны  (х).

Таким образом, волны материи приняли абстрактно-математический облик и получили символическое значение как «волны вероятности» (М. Борн).

Уравнения квантовой механики оказались волновыми (квантовые объекты обладают одновременно и волновыми свойствами). Предложенная Шредингером для описания квантовых явлений, а именно частицы, свободно движущейся по оси Х, волновая функция

Операции с волновыми функциями позволяют вычислить вероятности квантово- механических событий. Волновая функция описывает не сам субъект как таковой и даже не его потенциальные возможности. И в концептуальном отношении понятие волновой функции важнее, нежели вероятностное наступление события. В науке главное – дать адекватное экспериментальным данным объяснение. Квантовая механика не имеет альтернативы в лице классической физики. В плане осмысления квантовых явлений классическая физика не проще квантовой механики, но она просто-напросто не подтверждается. Но наука – это не только самые развитые теории, но и их предшественницы, все теории, объединенные научным сходством. Классическая и квантовая механика, прежде всего, используют одни и те же понятия таких физических параметров, как координата (x, у, z), импульс (рх, ру, рz) момент импульса М, энергия Е.

Согласно принципу наблюдаемости В. Гейзенберга, «разумно включать в теорию только величины, поддающиеся наблюдению…». Но дело обстоит иначе, чем кажется на первый взгляд. По Эйнштейну «только теория решает, что именно можно наблюдать», но и в аргументации Эйнштейна не учитывается в полной мере специфика квантовой механики.

И все попытки представить себе квантовые объекты и происходящие с ними процессы в наглядной, т.е. подвластной чувствам, форме только игнорируют специфику квантовой механики.

И на вопрос, что представляет собой свободно движущаяся, т.е., еще не вступившая во взаимодействие с макроскопическими условиями наблюдения, частица должен быть таким: движущаяся частица есть действительно частица, для которой характерны возможности, описываемые квантово-механическими уравнениями.

Для квантово-механических явлений характерны соотношения неопределенностей:

Принцип неопределенности Δх Δр ≥ h немецкий физик В. Гейзенберг (1901-1976) показал, что чем точнее измеряется местоположение частицы (координата), тем труднее предсказать ее скорость (импульс) и наоборот, можно узнать один или другой параметр, но не оба сразу – указанное соотношение неопределенности стало принципом неопределенности, т.к. показывает принципиально вероятностный характер предсказания событий.

Принцип дополнительности Н. Бора (1928 г.) – дает более широкую трактовку принципа неопределенности Гейзенберга, в обобщенной формулировке смысл принципа дополнительности состоит в том, что

Получение экспериментальной информации об одних физических параметрах неизбежно приводит к потере других, дополнительных параметров, которые характеризуют это же явление (эффект) с несколько другой стороны.

В физическом смысле такими дополнительными друг к другу сущностями, кроме указанных координат и импульса, могут быть волновое и корпускулярное проявление вещества или излучения, энергия и длительность события или измерения, выражаемая соотношением Δ E Δ t ≥ h.Также для квантово-механических явлений характерны: туннельный эффект, принцип суперпозиции, статистические закономерности и вероятностная предсказуемость.

Современная теория строения атома также основана на квантово-механических представлениях; в частности, используя новые представления о свойствах электрона, В. Паули сформулировал принцип, позволяющий объяснять расположение электронов по оболочкам. В. Паули(1900-1958) – немецкий физик-теоретик, лауреат Нобелевской премии 1945 г за открытие принципа запрета – принципа Паули, им же введен термин «нейтрон».

Классическое представление о планетарной модели атома и орбитах электронов было заменено волновой механикой и квантовой теорией элементарных процессов

Результаты и идеи квантовой механики позволили построить теорию о движении заряженных микрочастиц, учитывая их квантово-механическую природу – квантовую электродинамику (квантовую теория поля).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: