Камерные пылеугольные топки

 

Камерные пылеугольные топки состоят из пылеугольных горелок и топочной камеры.

Топочной камерой называется устройство, предназначенное для завершения процесса горения и изоляции его от внешних условий.

Горелки предназначены для ввода в топку и перемешивания топлива и воздуха, обеспечения устойчивого воспламенения и выгорания смеси. Они должны отвечать следующим требованиям: герметичность соединения с топкой; ремонтопригодность; обеспечивать устойчивое горение на сниженной нагрузке и при использовании резервного топлива (газа или мазута).

Топки для сжигания твердых топлив по способу вывода шлака разделяют на топки с сухим шлакоудалением (рис. 2.8) и топки с жидким шлакоудалением (рис. 2.9).

На рис. 2.8 приведена принципиальная схема факельной (пылеугольной) топки с сухим шлакоудалением, где топливо сгорает во взвешенном состоянии в объеме топочной камеры.

 

 

б
а

 

В топках с сухим шлакоудалением ядро факела располагается несколько ниже топочной камеры, покрытой экранными поверхностями нагрева, воспринимающими излучаемую продуктами сгорания и горящим факелом теплоту и защищающими стены топочной камеры от воздействия высоких температур. Такие топки выполняются однокамерными с холодной воронкой в нижней части. В зоне холодной воронки и в верхней части топки температуры продуктов горения более низкие, чем в ядре факела. Взвешенные в потоке топочных газов частички золы, попадая из ядра факела в области относительно пониженных температур, охлаждаются и затвердевают. Небольшая часть золы (10 – 15 % общей зольности топлива) выпадает в шлаковый бункер, расположенный под холодной воронкой. Остальная зола уносится с продуктами сгорания в газоходы котла.

Топки с жидким шлакоудалением бывают однокамерные и двухкамерные.
В однокамерных низ топочной камеры выполняют в виде горизонтального или наклонного пода. На высоте 4 – 5 м от пода экраны закрывают теплоизоляционным материалом для снижения тепловосприятия, что позволяет поддерживать вблизи пода топки высокие температуры 1500 – 1600 оС, при которых шлак находится в жидком состоянии. Жидкий шлак непрерывно удаляется через летку в шлаковую ванну, заполненную водой.
В двухкамерных топках процессы сгорания топлива и охлаждения продуктов сгорания разделены.

Принципиальные схемы двухкамерных циклонных топок с жидким шлакоудалением показаны на рис. 2.9.Основными составляющими циклонным топок являются вихревая камера горения, представляющая собой цилиндр с тангенциальным сосредоточенным или рассредоточенным вводом топлива и воздуха, и камера охлаждения призматической формы.

Топливо подают в вихревую камеру с первичным воздухом. Топливно-воздушную смесь через завихритель (улитку) вводят в центральную часть камеры. По оси вводится дробленка. Через тангенциально расположенные сопла поступает угольная пыль. Вторичный воздух подают в камеру тангенциально через сопла-щели с большой скоростью (более 100 м/с), обеспечивая движение топливных частиц к стенкам камеры. Образующиеся в циклонной камере вихри способствуют интенсивному образованию топливно-воздушной смеси и горению топлива как в объеме циклона, так и на его стенках. Между камерами сгорания и охлаждения располагается шлакоулавливающий пучок футерованных (закрытых теплоизоляционным материалом) труб, предназначенный для улавливания расплавленных капелек шлака, содержащихся в продуктах сгорания. Неуловленные частички золы затвердевают в камере охлаждения.

Стены камеры горения для утепления выполняются из ошипованных экранов, покрытых огнеупорной обмазкой (рис. 2.10), а стены камеры охлаждения имеют неутепленные гладкотрубные или плавниковые экраны.

 

В зависимости от принципа организации процесса ввода пылевоздушной смеси пылеугольные горелки можно разделить на три типа: вихревые, прямоточные и плоскофакельные.

Принцип работы вихревой горелки (рис. 2.11, а) следующий. Потоки первичного I и вторичного II воздуха вводят в топку через кольцевые концентрические каналы, в которых установлены завихрители. Направление крутки потоков одинаковое. Характерной особенностью такого течения является сопоставимость по величине всех трех составляющих скорости: аксиальной (продольной) wа, касательной wt (окружной) и радиальной wr. Наличие касательной составляющей скорости приводит к заметному расширению струи, образующей в пространстве параболическое тело вращения. В центральной внутренней части 1струи образуется зона разрежения, величина которой определяется втулочным отношением т=Dо/Da и скоростью потоков на выходе из горелок.

Под действием перепада давлений возникают обратные токи высокотемпературных продуктов сгорания,обеспечивающие стабилизацию воспламенения пылевоздушной смеси. При движении первичный I и вторичный II воздух перемешиваются, и процесс горения распространяется на внешнюю поверхность 2струи.

В зависимости от конструкции завихрителей различают горелки улиточно-лопаточные (рис. 2.12, в), улиточно-улиточные (рис. 2.12, а), лопаточно-лопаточные, прямоточно-улиточные (рис. 2.12, б) и прямоточно-лопаточные. В названии сначала указывают тип завихрителя по первичному воздуху.

 

Рис. 2.12. Виды вихревых пылеугольных горелок: а – улиточно-улиточная горелка;
б – прямоточно-улиточная горелка ОРГРЭС; в – улиточно-лопаточная горелка ЦКТИ – ТКЗ;
1 – улитка пылевоздушной смеси; 1' – входной патрубок пылевоздушной смеси; 2 – улитка вторичного воздуха; 2' – короб ввода вторичного воздуха; 3 – кольцевой канал для выхода пылевоздушной смеси в топку; 4 – то же для вторичного воздуха; 5 – основная мазутная форсунка;
5' – растопочная мазутная форсунка; 6 – рассекатель на выходе пылевоздушной смеси;
7 – завихривающие лопатки для вторичного воздуха; 8 – подвод третичного воздуха по осевому каналу; 9 – управление положением рассекателя; 10 – завихритель осевого потока воздуха;
11 – обмуровка топки; АБ – граница воспламенения пылевоздушной смеси; В – подсос топочных газов к корню факела

 

В вихревой горелке подводы первичного I и вторичного II воздуха индивидуальные (рис. 2.11). Подвод вторичного воздуха может быть как верхним, так и нижним, а подвод первичного воздуха – только верхним, что объясняется необходимостью предупреждения отложений пыли в пылепроводе. Каналы первичного и вторичного воздуха выполняются кольцевыми концентрическими.

Раскрытие факела, количество эжектируемых газов, распределение скоростей, дальнобойность в вихревой горелке определяются интенсивностью закручивания потоков, которая оценивается параметром п крутки, зависящим от конструкции завихрителя.

Через вихревые горелки целесообразна подача всех видов топлива, кроме фрезерного торфа. К недостаткам этих горелок следует отнести: повышенное гидравлическое сопротивление, конструктивную сложность, необходимость выполнения выходной части из жаростойких материалов во избежание ее выгорания, повышенную склонность к сепарации топлива, несколько больший (по сравнению с горелками других конструкций) выброс оксидов азота в атмосферу.

В прямоточных горелках в отличие от вихревых потоки первичного I и вторичного II воздуха не закручиваются и имеют однонаправленное (попутное) движение (рис. 2.11, б). Касательная составляющая скорости отсутствует, а радиальная намного меньше продольной составляющей.

Стабилизация воспламенения осуществляется благодаря эжекции продуктов сгорания 1 по периферии 2струи. Нужная степень перемешивания воздуха достигается соответствующим соотношением скоростей первичного I и вторичного II воздуха.

Сопротивление прямоточных горелок меньше, чем вихревых, они проще в изготовлении, количество образующихся оксидов азота меньше. К недостаткам прямоточных горелок следует отнести более высокую дальнобойность и худшие условия перемешивания смеси по сравнению с вихревыми.

Область применения прямоточных горелок – каменные и бурые угли. Горелки предварительного перемешивания, имеющие камеру смешения,применяют в основном для торфа и бурых углей.

Принцип работы плоскофакельных горелок (рис. 2.13) основан на использовании эффекта соударения двух струй воздуха, направленных под углом друг к другу. Дальнобойность факела плоскофакельных горелок меньше, чем у прямоточных. Между струями вторичного воздуха и горелкой образуется «треугольник», в который подается топливо, воспламеняемое эжектируемыми в него раскаленными продуктами сгорания. В результате раздавливания струй после соударения образуется плоская струя, обладающая большой поверхностью. Вследствие расширения струи в одной плоскости и интенсивной эжекции ею продуктов сгорания снизу и сверху скорость струи резко падает. Наклон факела регулируется изменением соотношения расходов вторичного воздуха, подаваемого в верхние и нижние сопла. Это свойство горелки используется при изменении качества сжигаемого топлива, а также нагрузки котлоагрегата или режима его работы.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: