Основы технологии минеральных кислот (на примере серной)

 

 

Кислотами называются химические соединения, содержащие в своём составе атомы водорода, способные замещаться на атомы металлов. В воде большинство кислот (НА) распадается (диссоциирует) на ионы водорода (Н+) и кислотного остатка (А-).

НА Н+ + А-

По степени диссоциации в воде различают сильные, практически полностью распадающиеся на ионы (азотная, соляна, серная), средние (фосфорная, плавиковая) и слабые, практически не диссоциирующие в воде кислоты (уксусная, борная). Кислоты можно обнаружить по изменению цвета некоторых веществ – индикаторов. Например, лакмус в кислотах – красный, фенолфталиен – бесцветный, метилоранж – оранжевый.

Кислоты оказывают сильное действие на организм человека и животных, т.к. обладают водоотнимающим действием и, изменяя щелочную реакцию протоплазмы живой клетки на кислую, осаждают белки. Действие кислоты на живой организм зависит от вида и концентрации кислоты. Под действием кислот может происходить раздражение и полное разрушение тканей.

В контакте с кислотами многие металлы подвергаются коррозии. Для защиты от разрушения применяют стойкие к действию кислот металлы, сплавы, силикатные и полимерные материалы. Для эти х же целей в кислоты иногда вводят специальные вещества – ингибиторы, которые уменьшают или устраняют коррозионное действие кислоты. Различают органические и неорганические кислоты.

По масштабам производства неорганические кислоты значительно превосходят органические. Они широко применяются во многих отраслях промышленности. Среди неорганических кислот наибольшее распространение в народном хозяйстве получила серная кислота.

 

Серная кислота является одним из основных продуктов химической промышленности и широко применяется во многих производствах. Она принадлежит к числу сильных неорганических кислот и является самой дешёвой из них (более чем в 2 раза дешевле азотной и соляной кислот).

Основное количество серной кислоты расходуется на производство минеральных удобрений (суперфосфата, сульфата аммония, нитрофоса, нитрофоски и др.). Вторым по величине потребителем является нефтепереработка, где серная кислота расходуется для очистки нефтепродуктов. Большие количества кислоты используются в металлургии цветных металлов, в гальванотехнике, в производстве других кислот (соляной, фосфорной, плавиковой, борной, хромовой, уксусной, лимонной и др.), для получения сульфатов металлов, простых и сложных эфиров, крахмала, сахара, для дубления кож, для снаряжения аккумуляторов и многих других целей. В смеси с азотной кислотой серная кислота используется для нитрования органических соединений при получении взрывчатых веществ и красителей.

В технике под серной кислотой понимают любые смеси оксида серы (VI) с водой. Состав такой «серной кислоты» можно отразить формулой

x H2O + y SO3 (где x,y > 0).Если соотношение > 0 – имеют дело с водным раствором серной кислоты, если 0 – с олеумом, раствором оксида серы (VI) в серной кислоте.

Безводная серная кислота или моногидрат при 200С представляет собой маслянистую жидкость с плотностью 1820 кг/м3. Температура кристализации моногидрата +10, 450С, кипения +296,20С при атмосферном давлении.

С водой и оксидом серы (VI) серная кислота смешивается в любых соотношениях, образуя промежуточные соединения состава H2SO4*nH2O (где n=4.2,1) и H2SO4*mSO3 (где m= 1,2). Рассматривая химические свойства серной кислоты, следует различать поведение разбавляемой и концентрированной кислот. Так, разбавленная кислота реагирует со всеми (за исключением свинца) металлами, стоящими в ряду активности правее водорода.

На поверхности свинца в контакте с разбавленной серной кислотой образуется плотная нерастворимая в кислоте плёнка сульфата, препятствующая дальнейшему растворению металла.

Концентрированная же серная кислота, обладая сильным окислительным действием, реагирует с металлами не непосредственно, а через промежуточную стадию образования оксида. В результате взаимодействия образуются сульфаты соответствующих металлов, оксид серы (IV) и вода.

По действием концентрированной кислоты легко (особенно при нагревании) растворяются такие металлы, стоящие в ряду активности после водорода, как медь, ртуть, серебро и другие. В то же время железо, хром, алюминий и даже кальций не разрушаются концентрированной кислотой, т.к. образующиеся на поверхности этих металлов оксидные плёнки имеют более плотную структуру и препятствуют непосредственному контакту металлов с кислотой. Это явление получило название пассивирования.

Концентрированная кислота и олеум отличаются высоким сродством к воде. При смешивании их с водой выделяется большое количество тепла. Сильное водоотнимающее действие серной кислоты проявляется в её способности поглощать пары воды из воздуха. На этом основано применение концентрированной серной кислоты для сушки газов.

Многие органические соединения в контакте с концентрированной серной кислотой, теряя воду, обугливаются.

Устойчивыми к действию серной кислоты являются эмали (до температуры кипения растворов любых концентраций, винипласт (до 600С при действии 80%-ной H2SO4), полиизобутилен (до 20-600С в зависимости от концентрации кислоты), полиэтилен (до 800С при действии 70%-ной кислоты), фторопласт – 4 (до 2500С). При нагревании до 4000С серная кислота практически полностью диссоциирует на воду о оксид серы (VI).

Серную кислоту в настоящее время производят двумя способами: контактным и нитрозным, или башенным.

В основе контактного способа лежит реакция окисления оксида серы (IV) в оксид серы (VI), протекающая на поверхности твёрдого катализатора

2 SO2 + O2 2SO3 + Q1

Образовавшийся оксид серы (VI), поглощаясь водой, превращается в серную кислоту

SO3 + H2O H2SO4 +Q2

Сущность нитрозного способа состоит в окислении оксида серы (IV) смесью оксидов азота NO2 и N2O3 в присутствии воды. Не разбирая подробно механизма этого сложного процесса, представим его следующей схемой:

SO2 + NO2 (N2O3) + H2O H2SO4 + NO (2NO)

Нитрозный способ по сравнению с контактным обладает рядом недостатков: во первых, он не позволяет получить серную кислоту с концентрацией больше 75%, во-вторых, получаемая кислота содержит много примесей и пригодна только для производства минеральных удобрений, наконец, производство кислоты нитрозным способом связано с выбросом в атмосферу большого количества оксидов азота, оказывающих вредное воздействие на окружающую среду. В связи с этим в нашей стране прекращено строительство сернокислых заводов, работающих по нитрозному способу, и более 90% производимой серной кислоты получают на контактных установках.

В качестве сырья для получения серной кислоты, в принципе, могут быть использованы любые вещества, содержащие серу. Чаще других используется серный колчедан FeS2 (около 45% производимой серной кислоты), элементарная сера, отходящие газы заводов цветной металлургии и газы нефтедобычи и нефтепереработки. В последние годы наметилась тенденция увеличения доли отходящих газов цветной металлургии и попутных газов нефтедобычи в общем балансе сырья для производства серной кислоты.

Технологический процесс производства серной кислоты контактным способом включает четыре основные стадии: обжиг серусодержащего сырья, очистка обжигового газа, контактное окисление оксида серы (IV) и абсорция оксида серы (VI).

Учитывая, что основным источником сырья для производства серной кислоты в нашей стране является серный колчедан, принципиальную схему контактного способа производства серной кислоты упрощённо можно представить следующим образом (рис.1).

1) обжиг серосодержащего сырья;

2) очистка обжигового газа от примесей;

3) контактное окисление оксида серы (IV) в оксид серы (VI);

4) поглощение оксида серы VI водой и получение серной кислоты.

 

Q Пыль Примеси Q Катализатор

Контактное окисление
Очистка SO2
Обжиг
Воздух

 

               
 
     
   
 
 


Колчедан

Разбавленная серная кислота

Огарок

 
 
Поглощение SO3


Концентрированная серная кислота

 

Рис. 1 Принципиальная схема производства серной кислоты

 

Обжиг серного колчедана, протекающий по уравнению реакции 4 FeS2 + 1102 = 2 Fe2O3 + 8SO2 + Q, является типичным гетерогенным процессом. Для его осуществления используются печи трех типов: механические полочные, печи пылевидного обжига и печи кипящего слоя (КС). Последние являются наиболее эффективными и постепенно становятся основным видом оборудования для обжига серного колчедана. Оптимальные условия обжига колчедана выбираются с учётом установленных экспериментально зависимостей скорости реакции, от размеров частиц обжигаемого колчедана, температуры и потока воздуха, подаваемого в печь.

На второй стадии обжиговый газ очищается от механических примесей и оксидов селена и мышьяка в скрубберах и электрофильтрах (стадия 2). Контактное окисление оксида серы (IV) в оксид серы (VI) (стадия 3) является обратимым, гетерогенно-каталитическим, экзотермическим процессом, протекающим с уменьшением газового объёма. В реальных условиях процесс контактного окисления ведут в политермическом режиме, начиная при относительно высоких температурах и заканчивая при относительно низких температурах. В промышленности нашли распространение полочные контактные аппараты и аппараты с кипящим слоем катализатора. Наиболее эффективными катализаторами оказались ванадиевые контактные массы, состоящие из оксида ванадаия (V), нанесённого на пористые носители.

Заключительная стадия (стадия 4) процесса осуществляется в скрубберах с насадкой, орошаемых в начале олеумом, а затем 98,3%-ной серной кислотой, имеющей наивысший коэффициент поглощения SO3. Процесс абсорции проводят при температурах 30…600С при атмосферном давлении. Качество выпускаемой в настоящее время серной кислоты регламентируется четырьмя государственными стандартами. В таблице 2.1. приведены некоторые технические требования, предъявляемые к серной кислоте государственными стандартами 2184-77 (Кислота серная техническая), 667-73 (Кислота серная аккумуляторная), 4204-77 (Кислота серная) и 14262-78 (Кислота серная особой чистоты). В каждом из ГОСТов подробно описываются методы, с помощью которых определяются физико-химические свойства серной кислоты.

 

Таблица 1. – Физико-химические свойства серной кислоты

ГОСТ Показатели     Физико-химические свойства серной кислоты Внешний вид Массовая доля моногидрата,% Массовая доля свободного окисла серы (VI), % Массовая доля железа, %, не более Массовая доля остатка после прокаливания, %, не более
             
2184-77 1. Контактная улучшенная (высший сорт) - 92,5-94,0 - 0,007 0,02
2. Контактная улучшенная (1-й сорт) - 92,5-94,0 - 0,015 0,03
3. Контактная техническая (1-й сорт) - 92,5 - 0,02 0,05
4. Контактная техническая (2-й сорт) - 92,5 - 0,1 -
5. Олеум улучшенный (высший сорт) Механических примесей нет -   0,007 0,02
6. Олеум улучшенный (1-й сорт) Маслянистая жидкость с опалесценцией -   0,01 0,03
7. Олеум технический - -   - -
8. Башенная -   - 0,05 0,3
9. Регенерированная -   - 0,2 0,4
667-73 10. Аккумуляторная (высший сорт) - 92-94 - 0,005 0,02
11. Аккумуляторная (1-й сорт) - 92-94 - 0,006 0,03
12. Аккумуляторная (2-й сорт) - 92-94 - 0,012 0,04
4204-77 13. Реактивная (ч) - - - - -
14. Реактивная (х.ч.) - - - - -
15. Реактивная (ч.д.а.) - - - - -
14262-78 16.Особой чистоты (осч 20-4) Неотличима от дистиллированной воды в пробирке диаметром 20 мм 93,5-95,5 - 2*10-6 5*10-4
17. Особой чистоты (осч 11-5) 93,5-95,5 - 3*10-6 5*10-4
18. Особой чистоты (осч 5-5) 93,5-95,5 - 1*10-5 5*10-4

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: