Квантовые свойства излучения

Тепловое излучение

Свечение тел, обусловленное нагреванием, называется тепловым излучением. Тепловое излучение совершается за счет энергии теплового движения атомов и молекул вещества (т.е., за счет внутренней энергии) и свойственно всем телам при температурах выше абсолютного нуля Кельвина. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких – преимущественно длинные (инфракрасные).

Тепловое излучение – практически единственный вид излучения, который может быть равновесным. Предположим, что нагретое (излучающее) тело помещено в полость, ограниченную идеально отражающей оболочкой. С течением времени, в результате непрерывного обмена энергией наступит равновесие. Допустим, что равновесие нарушилось и тело излучает энергии больше, чем поглощает. Тогда температура тела должна понижаться. В результате будет уменьшаться количество излучаемой телом энергии, пока не наступит равновесие. Все другие виды излучения являются неравновесными.

Количественной характеристикой теплового излучения служит излучательность тела – мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины, т.е.:

где - энергия электромагнитного излучения, испускаемого за единицу времени (мощность излучения) с единицы площади поверхности тела в интервале частот от ν до ν +dν. Единица измерения излучательности.

Излучательность может быть представлена в виде функции длины волны:

,

так как , то

,

где знак «минус» указывает на то, что с возрастанием одной из величин (частоты или длины волны) другая величина убывает. Поэтому в дальнейшем этот знак будем опускать. То есть:

. (1.1)

Можно также вычислить интегральную излучательность (ее называют просто излучательностью):

(1.2)

Способность тел поглощать падающее на них излучение характеризуется поглощательной способностью:

показывающей, какая доля энергии, приносимой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частотами от ν до ν +dν, поглощается телами. Поглощательная способность тела является безразмерной величиной. Величины и зависят от природы тела, его термодинамической температуры и при этом различаются для излучений различных частот. Поэтому эти величины относятся к определенным температуре и частоте (вернее, узкому интервалу частот от ν до ν +dν) и называются спектральной плотностью излучательности и спектральной поглощательной способностью .

Тело, способное поглощать полностью при любой температуре все падающее на него излучение называется абсолютно черным телом. Следовательно, для любых частот и температур для абсолютно черного тела справедливо:

Абсолютно черных тел в природе не существует. Идеальной моделью абсолютно черного тела является замкнутая полость с небольшим отверстием, внутренняя поверхность которой зачернена, рис.1. Луч света, попадающий внутрь такой полости, испытывает многократное отражение от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю. Из-за подобного многократного отражения кажутся абсолютно черными окна домов.

Наряду с понятием абсолютно черного тела используется понятие серого тела – такого тела, поглощательная способность которого меньше единицы, но постоянна для всех частот и зависит только от температуры, материала и состояния поверхности тела. Таким образом, из определения серого тела следует, что:

Аналогичным образом можно ввести понятие абсолютно белого тела (тела отражающего все падающее на него излучение):

Закон Кирхгофа

Кирхгоф, исходя из второго закона термодинамики и анализируя условия равновесного излучения в изолированной системе тел, установил количественную связь между спектральной плотностью излучательности и спектральной поглощательной способностью тела, получившую название закона Кирхгофа: Отношение спектральной плотности излучательности к спектральной поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры:

(1.3)

для абсолютно черного тела , поэтому из закона Кирхгофа вытекает, что в этом случае:

Таким образом, универсальная функция Кирхгофа представляет собой спектральную плотность излучательности абсолютно черного тела. Следовательно, для всех тел отношение равно спектральной плотности излучательности абсолютно черного тела.

Из закона Кирхгофа следует, что спектральная плотность излучательности любого тела всегда меньше универсальной функции Кирхгофа (при тех же значениях частоты и температуры), т.к. . Кроме того, из (1.3) вытекает, что если тело не поглощает электромагнитной волны какой-то определенной частоты, то оно и не излучает электромагнитных волн такой длины волны, т.к. при и .

Используя закон Кирхгофа выражению для излучательности тела можно придать вид:

Для серого тела это выражение принимает вид:

(1.4)

где

(1.5)

излучательность абсолютно черного тела, которая зависит только от температуры.

Закон Кирхгофа описывает только тепловое излучение, являясь настолько характерным для него, что может служить надежным критерием для определения природы излучения. Излучение, которое не подчиняется закону Кирхгофа, не является равновесным (т.е. тепловым).

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: