Детекторы ионизирующих излучений

Детекторы ионизирующих излучений – это приборы для обнаружения и измерения интенсивности ионизирующих излучений. В качестве детекторов ионизирующих излучений применяются газоразрядные счетчики, ионизационные камеры, сцинтилляционные счетчики, толстослойные фотопластинки и фотопленки.

Ионизационная камера. Применяются камеры (рис. 17) с толщиной стенок примерно 1 г/см2.

Рис. 17. Ионизационная камера:

1 – корпус; 2 – собирающий электрод; 3 – изолятор

 

Внутренние стенки камеры, если она изготовлена из изолятора, покрываются токопроводящим покрытием, например графитом.

Если на камеру действуют ионизирующие излучения, то в ней образуются свободные электрические заряды, и газовая среда в рабочем объеме становится проводящей.

С подключением к электродам камеры источника питания в ней создается электрическое поле. При отсутствии ионизирующих излучений ток в цепи возникать не будет, так как в ней нет свободных электрических зарядов и сопротивление ее бесконечно велико.

Когда под воздействием излучений в газовом объеме камеры возникают свободные положительные ионы и электроны, ее сопротивление уменьшается, и даже при небольшом напряжении на электродах ионы приобретают направленное движение. Положительные ионы притягиваются к отрицательному электроду, отрицательные электроны – к положительному электроду камеры. В цепи возникает ток, называемый ионизационным (рис. 18).

При небольших напряжениях на электродах камеры силы, воздействующие на ионы, невелики, скорости их движения малы и, чтобы достичь электродов, им требуется значительное время.

В течение этого времени большое число разноименно заряженных ионов, притягиваясь друг к другу, успевает рекомбинировать. На электроды камеры попадает лишь некоторая часть образовавшихся при ионизации ионов, и ток в цепи камеры будет небольшим.

 

Рис. 18. Цепь ионизационной камеры

 

С увеличением напряжения растет напряженность электрического поля и сила притяжения ионов к электродам, увеличиваются скорость движения ионов и уменьшается время их нахождения в камере. Большое число ионов принимает участие в образовании ионизационного тока, и он увеличивается (рис. 19), выходит на насыщение, а затем вновь увеличивается (вторичная ионизация).

 

Рис. 19. Вольт-амперная характеристика ионизационной камеры:

I – область рекомбинации; II – область насыщения; III – область
ударной ионизации

 

Зависимость ионизационного тока I ион от напряжения U между электродами при неизменной мощности дозы (P = сonst) называется вольт-амперной характеристикой камеры. Ионизационная камера работает в режиме токонасыщения (от U нас до U уд).

Газоразрядный счетчик представляет собой устройство, состоящее из замкнутого резервуара из двух электродов, между которыми находится газовая среда, где и создается электрическое поле. В отличие от ионизационной камеры, работающей в режиме насыщения, в счетчике используется режим ударной ионизации. Рабочее напряжение счетчиков составляет 410±30 В. Величина рабочего напряжения зависит от конструкции счетчика и состава заполняющей его газовой смеси.

Газоразрядный счетчик выполняется в виде тонкого металлического цилиндра, служащего его внешним отрицательным электродом (рис. 20).

 

Рис. 20. Газоразрядный счетчик:

1 – металлический цилиндр (отрицательный электрод); 2 – тонкая
металлическая нить (положительный электрод); 3 – изоляторы;
4 – выводные контакты; 5 – газовая среда, смесь инертных газов
с галогенами при пониженном давлении

 

С торцов цилиндр закрыт изоляторами, между которыми натянута тонкая металлическая нить, совмещающаяся с положительным электродом. Оба электрода соединяются с контактами. Рабочий объем счетчика заполняется не воздухом, а газами, атомы которых обладают незначительной способностью к захвату электронов.

К ним относятся инертные газы с полностью заполненными внешними электронными орбитами атомов – аргон, неон, гелий.

Давление газа внутри счетчика значительно меньше атмосферного (100–200 мм рт. ст.). При этом уменьшается вероятность столкновения электронов с атомами и молекулами и между двумя очередными столкновениями они приобретают большие скорости и энергии, необходимые для ударной ионизации.

Для регистрации альфа-излучений (и бета-излучений малых энергий) применяются торцовые счетчики (рис. 21), называемые так потому, что частицы проникают в них через входное окно на торце. Они представляют собой стеклянный баллон, на внутренней поверхности которого нанесен тонкий слой меди, служащий отрицательным электродом.

 

Рис. 21. Торцовый альфа-счетчик:

1 – выводной контакт положительного электрода; 2 – стеклянный баллон;

3 – положительный электрод; 4 – выводной контакт отрицательного

электрода; 5 – отрицательный электрод; 6 – стеклянный шарик

7 – входное окно (слюда)

 

По центральной оси баллона укреплена стальная или вольфрамовая нить, являющаяся электродом. От обоих электродов сделаны выводы к наружным контактам. На конце положительного электрода имеется стеклянный шарик, благодаря которому устраняются ложные разряды. Входное окно закрыто тонкой слюдяной пленкой (2–10 мг/см2). Внутреннее давление в торцевых счетчиках близко к атмосферному.

Альфа-частицы, проникая через входное окно и распространяясь вдоль оси счетчика, создают на своем пути колонну ионов большой плотности. Поскольку эта колонна оказывается перпендикулярной к силам электрического поля, то ионы разных знаков быстро расходятся друг от друга, этим уменьшается вероятность их рекомбинации.

Для регистрации нейтронных излучений используются счетчики, наполненные борсодержащими газами (BF3) или водородом, или электродами, покрытыми твердым бором или водосодержащими веществами. Такие счетчики работают при напряжениях около 1400 В, имеют плато шириной 200–250 В.

Сцинтилляционный счетчик состоит излюминесцирующего кристалла оптически соединенного с фотоэлектронным умножителем (ФЭУ). ФЭУ позволяет преобразовать слабые световые вспышки люминесцирующих веществ (люминофоров) в достаточно большие электрические импульсы, которые регистрируются электронной аппаратурой.

Достоинством этого метода – высокая временная разрешающая способность: порядка 10–7–10–8 с.

ФЭУ совмещает свойства фотоэлемента и усилителя тока с большим коэффициентом усиления и состоит из катода, анода, динодов (эмиттеров), на которых происходит вторичная эмиссия электронов (рис. 22).

 

Рис. 22. Сцинтилляционный счетчик:

1 – люминесцирующее вещество; 2 – катод; 3 – фокусирующий электрод;
4, 5, 6 и 7 – эмиттеры (диноды); 8 – анод

 

Весь сцинтилляционный счетчик (сцинтиллятор и ФЭУ) заключен в светонепроницаемый кожух, чтобы исключить попадание постороннего света на фотокатод и диноды (эмиттеры) ФЭУ.

ФЭУ защищен от внешних электрических и магнитных полей, которые нарушают фокусировку электронов. Вся система ФЭУ размещена в стеклянном баллоне с высоким вакуумом, необходимым для сохранения поверхностей фотослоя и динодов, а также свободного движения электронов.

В сцинтилляционном счетчике фотоэлектронный усилитель работает в импульсном режиме.

Световые импульсы, возникающие в сцинтилляторе под действием ионизирующих излучений, из фотокатода за счет фотоэффекта выбивают электроны, которые собираются электрическим полем и направляются на первый эмиттер (динод), ускоряясь до энергии, достаточной для выбивания вторичных электронов из следующего эмиттера.

Умножение числа электронов происходит при попадании потока первичных электронов на эмиттер. Выбитые электроны фокусируются на последующий динод, из которого они вновь выбивают примерно удвоенное количество электронов и т. д. Таким образом, лавина электронов возрастает от катода к аноду, происходит преобразование очень слабых световых вспышек, возникающих в сцинтилляторе, в регистрируемые электрические импульсы. Общий коэффициент усиления ФЭУ составляет 105–106 раз. Сцинтилляционные счетчики обладают более высокой эффективностью счета (до 100%) и разрешающей способностью по сравнению с газоразрядными.

 
 

 


1. Перечислите источники радиационный фона окружающей среды.

2. Назовите компоненты естественного радиационного фона и дозу, получаемую населением от космических излучений.

3. Какие компоненты составляют технологически измененный естественный радиационный фон?

4. Перечислите источники искусственного радиационного фона и объясните значение при облучении населения Беларуси.

5. Перечислите методы обнаружения и регистрации ионизирующих излу

чений.

6. Назовите детекторы ионизирующих излучений и их характеристики.

ЛЕКЦИЯ 7. ПРОГНОЗИРОВАНИЕ, ОЦЕНКА
И ПРЕДУПРЕЖДЕНИЕ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ

7.1. Система мониторинга и прогнозирование чрезвычайных ситуаций.

7.2. Анализ и оценка риска возникновения чрезвычайных ситуаций.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: