double arrow

Этапы развития генетики



В первой половине XIX в. стали складываться непосредственные предпосылки учения о наследственности – генетики. Качественным рубежом здесь оказались два события. Первое – создание клеточной теории. Старая идея единства растительного и животного миров должна была получить конкретно-научное выражение в форме теории, которая базируется на том, что инвариантные характеристики органического мира должны иметь свое морфологическое выражение. Второе событие – выделение объекта генетики, т.е. явлений наследственности как специфической черты живого, которую не следует растворять во множестве свойств индивидуального развития организма. Такой подход сформулирован у О. Сажрэ и в полной мере получил свое развитие в творчестве Г. Менделя.
Создание клеточной теории было важнейшим шагом на пути разработки научных воззрений на наследственность и изменчивость. Познание природы наследственности предполагало выяснение вопроса, что является универсальной единицей структурной организации растительного и животного миров. Фундаментальной философской идеей, которая привела к открытию клетки, была идея единства животного и растительного миров.
Следующий шаг на этом пути состоял в том, чтобы от общей идеи единства органического мира прийти к выводу, что такое единство должно иметь свое морфологическое выражение, проявляться в определенной структурной гомологии организмов. Клетка была выведена как универсальная единица строения организма.

В развитии генетики можно выделить 3 этапа:

1 Этап (с 1900 по 1925 г.) – этап классической генетики. В этот период были переоткрыты и подтверждены на многих видах растений и животных законы Г.Менделя, создана хромосомная теория наследственности (Т.Г.Морган). Важнейшим событием в генетике XIX в. было формулирование Менделем его законов. Мендель рассматривал не наследуемость всех признаков организма сразу, а выделял наследуемость единичных, отдельных признаков, абстрагируя эти признаки от остальных. При этом он применял вариационно-статистический метод, демонстрируя возможности математического моделирования в биологии. Открытие Менделем закономерностей расщепления признаков показало, что возникающие у организмов рецессивные мутации не исчезают, а сохраняются в популяции в гетерозиготном состоянии. Этим были разрушены старые натурфилософские концепции о слитном, непрерывном характере наследственности, при котором она рассматривалась как некое континуальное образование (наподобие некой жидкости).
Открытие Менделя опередило свое время. Новаторское значение открытых им законов наследственности не было оценено современниками: в сознании биологов еще не созрели необходимые предпосылки научного учения о наследственности; они сложились лишь в начале XX в.
Вступление в XX в. ознаменовалось в биологии бурным развитием генетики. Важнейшим исходным событием явилось новое открытие законов Менделя. Далее последовала лавина эмпирических открытий и построение различных теоретических моделей. За относительно короткий срок (20–30 лет) в учении о наследственности был накоплен колоссальный эмпирический и теоретический материал.




 

2 Этап (с1926 по 1953) – этап широкого развёртывания работ по искусственному мутагенезу (Г.Меллер и др.).в это время было показано сложное строение и дробимость гена, заложены основы биохимической, популяционной и эволюционной генетики, доказано, что молекула ДНК является носителем наследственной информации (О.Эвери), были заложены основы ветеринарной генетики.Тридцатые годы ХХ в. можно смело назвать расцветом теоретической генетики. Уже тогда было доказано существование генов, стало ясно, что они локализованы в хромосомах. В связи с этим следует назвать имена некоторых отечественных ученых, внесших значительный вклад в развитие генетической науки: Н.К. Кольцов, выдающийся организатор отечественной биологической науки, высказавший гипотезу о том, что при делении хромосомы сами себя повторяют в клетках (1928 г.); С.С. Четвериков – создатель эволюционно и популяционной генетики; А.С. Серебровский, выдвинувший идею о линейном строении и делимости генов; С.Н. Давиденков и С.Г. Левит – основатели медицинской генетики и др.
Признанным лидером этой плеяды ученых был Н.И. Вавилов. Во многом благодаря его энергии и таланту отечественная генетика и селекция занимала в то время одно из первых мест в мире. В 1934 г. по его инициативе был организован Институт генетики АН СССР, на основе которого в дальнейшем был создан Институт общей генетики имени Н.И. Вавилова.



 

3 Этап (начинается с 1953 г.) – этап современной генетики, для которого характерны исследования явлений наследственности на молекулярном уровне. Была открыта структура ДНК (Дж. Утсон), расшифрован генетический код (Ф.Крик), химическим путём синтезирован ген (Г. Корана). С середины ХХ в. классическая генетика перестала получать большую часть новой информации о механизмах наследственности. Эту роль в современной науке заняла молекулярная биология и её раздел – молекулярная генетика, науки, имеющие дело с конкретными молекулами ДНК, о существовании которых классическая генетика могла лишь догадываться. В 1953 г. биологом Дж. Уотсоном и физиком Ф. Криком была открыта пространственная структура основного вещества наследственности – ДНК. Большой вклад в развитие генетики внесли отечественные учёные. Научные генетические школы созданы Вавиловым и др. Получили искусственным путём мутации – Филиппов. Вавилов сформулировал закон гомологических рядов наследственной изменчивости. Карпеченко предложил метод преодоления бесплодия у некоторых гибридов. Четвериков – основатель учения о генетике популяций. Серебровский – показал сложное строение и дробимость гена.

Заказать ✍️ написание учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Сейчас читают про: