Эксперименты Роберта Годдарда, Макса Валье и других исследователей

В 1909 г. американский ученый д-р Роберт Годдард приступил к широким теоретическим исследованиям в области ракетодинамики. Через три года он провел огневое испытание твердотопливной ракеты с измерением тяги. Ракета была помещена внутри вакуумированного стеклянного резервуара, чтобы доказать, что она может функционировать в безвоздушном пространстве. Этим окончательно отвергалось широко распространенное в то время мнение, что ракета якобы может работать только в атмосфере, где тяга создается в результате отталкивания истекающих газов от воздуха.

В действительности, как известно, ракета движется в соответствии с третьим законом Ньютона, согласно которому для каждого действия (истечения из ракеты) имеется равное и противоположное по направлению противодействие (отдача или тяга). Эксперимент Годдарда показал, что в действительности воздух оказывает лишь «демпфирующий» эффект, замедляя истекающие газы и уменьшая тягу.

В более поздних работах Годдарда рассматривается проект высотной исследовательской ракеты, способной доставлять данные об атмосфере с высот, находящихся вне пределов досягаемости авиации и высотных зондов. Подобно Циолковскому, он предсказал большие потенциальные возможности ракет на жидком топливе.

Его решительность обеспечила ему прочное место в истории. 16 марта 1926 г. в Обурне, шт. Массачусетс, он осуществил успешный запуск первой в мире жидкостной ракеты. Эта ракета поднялась на высоту 12,5 м, пролетев 56 м за время 2,5 с.

Следующий, кому удалось добиться успеха, был немецкий исследователь Иоганнес Винклер, который 21 февраля 1931 г. вблизи Дессау испытал ракету на жидком метане и жидком кислороде. Ракета поднялась только на 3 м, но через три недели, когда были смонтированы стабилизирующие плоскости, была достигнута высота уже около 90 м.

Другой европеец мог бы пожинать лавры успеха, если бы его эксперименты с жидким топливом были непосредственно направлены на создание ракеты, а не ракетного автомобиля. Благоприятная возможность представилась Максу Валье, немецкому изобретателю, первоначально экспериментировавшему на автомобилях, буерах и железнодорожных вагонах со связками твердотопливных двигателей, после того как он получил поддержку со стороны д-ра П. Хейланда, которому принадлежал завод по производству промышленных газов, в том числе жидкого кислорода. С помощью Вальтера Риделя, одного из инженеров завода, Валье построил и испытал небольшой жидкостный ракетный двигатель с корпусом из стали. 8 марта 1930 г. этот неохлаждаемый двигатель, работающий на этиловом спирте и жидком кислороде, развил тягу около 8 кгс и был установлен на шасси автомобиля «Рак-6». Другой двигатель такого же типа был установлен в марте 1930 г. на автомобиле «Рак-7». После испытания он был демонтирован и усовершенствован (увеличена тяга до 20— 30 кгс). Автомобиль «Рак-7» с этим двигателем демонстрировался 19 апреля 1930 г. на аэродроме Темпельхоф в Берлине. Автомобиль двигался с шумом, истекающая реактивная струя была красноватой и дымной, что свидетельствовало о неполном сгорании топлива.

Валье полагал, что путь к космическим путешествиям начинается с ракетного автомобиля, который должен постепенно развиться в ракетоплан и космический корабль. Этим, в частности, объясняется, почему Валье не стал первым европейцем, запустившим жидкостную ракету. Он сосредоточил свое внимание на испытаниях собственных ракетных двигателей, установленных на управляемых человеком аппаратах.

К несчастью, исследования имели трагические последствия. В ночь на 17 мая 1930 г. Валье и его помощники испытывали новый двигатель, который предполагали демонстрировать на автомобиле во время предстоящей авиационной недели в Берлине. В качестве топлива они использовали смесь воды и дизельного топлива. Были проведены две экспериментальные поездки с соплом, имеющим диаметр критического сечения 28 мм. Валье настоял еще на одной поездке с соплом диаметром 40 мм и с повышенным давлением в камере сгорания для получения тяги 100 кгс. Во время испытания двигателя давление в камере сгорания достигло 7 атм, и горение в двигателе стало крайне неравномерным с резкими взрывными толчками. Затем произошел сильный взрыв, и зазубренный кусочек стали рассек аорту Валье. Истекая кровью, Валье умер.

После смерти Валье Рудольф усовершенствовал его двигатель, уделив особое внимание впрыску горючего и окислителя. Это открыло дорогу новому поколению ракетных двигателей. В конструкции Валье — Риделя горючее подавалось через выдвинутую внутрь камеры форсунку с мелкими отверстиями, а жидкий кислород поступал через отверстия, расположенные вблизи стенки камеры. В конструкции Рудольфа горючее и окислитель подавались через кольцевые щели. Горючее, направленное к стенке камеры сгорания, не только охлаждало ее, но и предохраняло от воздействия окислителя (которое было одной из причин прогаров стенки в конструкции Валье — Риделя). Грибообразная форма форсунки горючего способствовала равномерному смешению впрыскиваемого топлива и, следовательно, очень ровному и спокойному горению без опасности взрыва.

Путем изменения площади сечения входных отверстий системы подачи топлива можно было регулировать тягу двигателя в процессе его работы. Такой ракетный двигатель с переменной тягой был построен и испытан в Куммерсдорфе и впоследствии установлен на самолете He-112 фирмы «Хейнкель», который совершил успешный испытательный полет в 1937 г.

Герман Оберт

Оберт, вдохновитель работ в Германии в области ракетостроения, был профессором физики и математики. Он родился в 1894 г. В 1923 г. он опубликовал небольшую книгу «Die Rakete zu den Planetraumen» («Ракета в межпланетном пространстве»), в которой не только изложил фундаментальные положения о движении ракет в космическом вакууме, но и доказал, что при достаточной тяге ракета может быть выведена на орбиту вокруг Земли. Так же как Циолковский и Годдард, он исследовал многие топливные комбинации. Самой значительной из всех его работ явилось детальное описание ракеты («Модель В»), которая, как он полагал, может быть использована для исследования верхней атмосферы. Хотя эта ракета никогда не была построена, она вызвала интерес к ракетной технике других талантливых исследователей, и в 1927 г. группа энтузиастов основала в Германии Общество межпланетных сообщений.

Члены общества приступили к разработке небольших жидкостных ракет, чтобы отработать основные принципы проектирования. На основе проекта Оберта был разработан двигатель «Кегельдюзе» (конический двигатель). Изготовленный из стали и меди, покрывающей его с внутренней стороны, двигатель был неохлаждаемым и работал на бензине и жидком кислороде.

Двигатель «Кегельдюзе» оказался важным этапом в двигателестроении Германии. Чтобы поддержать веру в новую технику, Г. Оберт, Р. Небель и К. Ридель подготовили стендовый эксперимент, который был проведен при строго контролируемых условиях в соответствии с требованиями Бюро стандартов. Фон Браун и Р. Энгель помогли наладить экспериментальную установку, и 23 июля 1930 г. была зарегистрирована успешная работа двигателя «Кегельдюзе» в течение 90 с при постоянной тяге 7 кгс и потреблении 6 кг жидкого кислорода и 1 кг бензина.

Небель, который работал с Обертом над ракетой для УФА, в дальнейшем предложил, чтобы Общество межпланетных сообщений построило ракету под названием «Минимальная ракета» (сокращенно «Мирак») для проведения экспериментов с жидкими топливами при малых затратах. Корпус первой ракеты «Мирак», являвшийся одновременно баком окислителя, был изготовлен из литого алюминия и имел форму цилиндра с обтекаемой носовой частью, где был смонтирован предохранительный клапан. Внутри монтировался конусообразный ракетный двигатель, а выступающая назад вдоль сопла конструкция представляла собой металлическую трубку, заправленную горючим. На конце трубки имелся небольшой бачок со сжатым углекислым газом для подачи горючего в камеру сгорания. Жидкий кислород подавался за счет давления собственного пара. Испытания ракет серии «Мирак», а затем и серии «Репульсор» проводились на полигоне в Рейникендорфе в Берлине. Некоторые ракеты были укомплектованы парашютами для возвращения их на Землю.

Полеты ракет «Мирак» часто были неудачными. Теплота, выделяющаяся в ракетном двигателе, погруженном в жидкий кислород, вызывала его интенсивное испарение, в результате развивалось высокое давление, которое разрывало бак, несмотря на наличие предохранительного клапана. Поэтому было решено создать ракету новой конструкции, получившую название «Репульсор».

В первой ракете «Репульсор» (двухстержневой) жидкий кислород и горючее заполняли две трубки из магния такого же поперечного сечения, как и в ракете «Мирак». Охлаждаемый водой двигатель размещался в головной части ракеты. Хотя ракета такой конструкции была тяжелой, при испытаниях она поднялась на высоту 18 м и медленно приземлилась. Единственной поломкой было разрушение линии горючего. В мае 1931 г. ракета «Репульсор» меньшего веса с четырьмя хвостовыми стабилизаторами из листового алюминия достигла высоты 60 м, покрыв расстояние 600 м.

В августе 1931 г. был разработан новый вариант ракеты — одностержневой «Репульсор». В этом варианте топливные баки были смонтированы в одну линию, в то время как в двухстержневом «Репульсоре» они располагались параллельно. Установленный в головной части двигатель имел водяную рубашку с проточным охлаждением. Контейнер с парашютом был размещен между хвостовыми стабилизаторами. Первая из этих ракет при запуске поднялась на высоту около 1 км, последующие образцы иногда достигали высоты около мили (~1600 м), однако, несмотря на успехи, конец этих работ был уже близок. Германия находилась в тисках экономической депрессии, число членов Общества межпланетных сообщений быстро сокращалось, многие жители кварталов, окружавших ракетный полигон в Рейникендорфе, и городские власти высказывали свое неудовольствие тем, что запуски ракет проводились в городе. В результате Общество межпланетных сообщений распалось и официально прекратило свое существование в 1934 г.

Дальнейшее развитие ракетостроения в Германии происходило при поддержке военного ведомства. В 1932 г. жидкостные ракеты были продемонстрированы группе офицеров на армейском испытательном полигоне в Куммерсдорфе. Пуски были успешными лишь частично, иногда ракета разрушалась до раскрытия парашюта.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: