Гидравлические элементы потока: площадь живого сечения

Потока, смоченный периметр, гидравлический радиус, объемный и весовой расход жидкости, средняя скорость движения потока

Все потоки жидкости подразделяются на два типа:

1) напорные — без свободной поверхности;

2) безнапорные — со свободной поверхностью.

Все потоки имеют общие гидравлические элементы: линии тока, живое сечение, расход, скорость. Приведём краткий словарь этих гидравлических тер­ми­нов.

Свободная поверхность это граница раздела жидкости и газа, давление на которой обычно равно атмосферному (рис. 7,а). Наличие или отсутствие её определяет тип потока: безнапорный или напорный. Напорные потоки, как правило, наблюдаются в водопроводных трубах (рис. 7,б) — работают полным сечением. Безнапорные — в канали­за­ционных (рис. 7,в), в которых труба заполняется не полностью, поток имеет свободную поверхность и движется самотёком, за счёт уклона трубы.

Линия тока — это элементарная струйка потока, площадь попе­речного сечения которой бесконечно мала. Поток состоит из пучка струек (рис. 7,г).

Площадь живого сечения потока (м2) — это площадь попе­речного сечения потока, перпендикулярная линиям тока (см. рис. 7,г).

Расход потока q (или Q) — это объём жидкости V, проходящей через живое сечение потока в единицу времени t:

 

q = V/t.

 

Единицы измерения расхода в СИ м3/с, а в других системах: м3/ч, м3/сут, л/с.

Средняя скорость потока v (м/с) — это частное от деления ра­с­хода потока на площадь живого сечения:

Скорости потоков воды в сетях водопровода и канализа­ции зданий обы­чно порядка 1 м/с.

Следующие два термина относятся к безнапорным потокам.

Смоченный периметр (м) — это часть периметра живого сече­ния потока, где жидкость соприкасается с твёрдыми стенками. Например, на рис. 7, в величиной является длина дуги окружности, которая об­разует нижнюю часть живого сечения потока и соприкасается со стенками трубы.

Гидравлический радиус R (м) — это отношение вида которое применяется в качестве расчётного параметра в формулах для без­напорных потоков.

 

Тема 1.3: «Истечение жидкости. Гидравлический расчет простых трубопроводов»

Истечение через малые отверстия в тонкой стенке при постоянном напоре. Истечение при несовершенном сжатии. Истечение под уровень. Истечение через насадки при постоянном напоре. Истечение из-под затвора в горизонтальном лотке.

Малым считается отверстие, высота которого не превышает 0,1 Н, где
Н – превышение свободной поверхности жидкости над центром тяжести отверстия (рис. 1).

Стенку считают тонкой, если ее толщина d < (1,5…3,0) d (см. рис. 1). При выполнении этого условия величина d не влияет на характер истечения жидкости из отверстия, так как вытекающая струя жидкости касается только острой кромки отверстия.

Рис. 1. Истечение жидкости из отверстия
в тонкой стенке

 

Поскольку частицы жидкости движутся к отверстию по криволинейным траекториям сил инерции струя, вытекающая из отверстия, сжимается. Благодаря действию сил инерции струя продолжает сжиматься и после выхода из отверстия. Наибольшее сжатие струи, как показывают опыты, наблюдается в сечении с-с на расстоянии примерно (0,5…1,0) d от входной кромки отверстия (см. рис.1). Это сечение называют сжатым. Степень сжатия струи в этом сечении оценивают коэффициентом сжатия e:

,

где wс и w соответственно площадь сжатого живого сечения струи и площадь отверстия.

Среднюю скорость струи V c в сжатом сечении с-с при р 0 = р ат вычисляют по формуле, полученной из уравнения Д. Бернулли, составленного для сечений I-I и с-с (см. рис.1):

,

где j – коэффициент скорости отверстия.

На основе использования уравнения траектории струи, вытекающей из отверстия, получено еще одно выражение для коэффициента j:

В формулах(3) и(4) a – коэффициент Кориолиса, z – коэффициент сопротивления отверстия, xi и yi – координаты произвольно взятой точки траектории струи, отсчитываемые от центра отверстия.

Поскольку напор теряется главным образом вблизи отверстия, где скорости достаточно велики, при истечении из отверстия во внимание принимают только местные потери напора.

Расход жидкости Q через отверстие равен:

где

.

Здесь m – коэффициент расхода отверстия, учитывающий влияние гидравлического сопротивления и сжатия струи на расход жидкости. С учетом выражения для m формула (1.25) принимает вид:

Величины коэффициентов e, z, j, m для отверстий определяют опытным путем. Установлено, что они зависят от формы отверстия и числа Рейнольдса. Однако при больших числах Рейнольдса (Re ³ 105) указанные коэффициенты от Re не зависят и для круглых и квадратных отверстий при совершенном сжатии струи равны: e = 0,62…0,64, z = 0,06, j = 0,97…0,98, m = 0,60…0,62.

Насадкой называют патрубок длиной 2,5 d £ L н £ 5 d (рис. 2), присоединенный к малому отверстию в тонкой стенке с целью изменения гидравлических характеристик истечения (скорости, расхода жидкости, траектории струи).

Рис. 2. Истечение через расходящийся
и сходящийся насадки

Насадки бывают цилиндрические (внешние и внутренние), конические (сходящиеся и расходящиеся) и коноидальные, т. е. очерченные по форме струи, вытекающей из отверстия.

Использование насадки любого типа вызывает увеличение расхода жидкости Q благодаря вакууму, возникающему внутри насадка в области сжатого сечения с-с (см. рис.2) и обуславливающему повышение напора истечения.

Среднюю скорость истечения жидкости из насадки V и расход Q определяют по формулам, полученным из уравнения Д. Бернулли, записываемого для сечений 1–1 (в напорном баке) и в-в (на выходе из насадка, рис. 2).

Здесь — коэффициент скорости насадки,

zн – коэффициент сопротивления насадки.

Для выходного сечения в-в коэффициент сжатия струи e = 1 (насадка в этой области работает полным сечением), поэтому коэффициент расхода насадки mн = jн.

Расход жидкости вытекающий из насадки, вычисляется по форму, аналогичной формуле (7),


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: