Энергия магнитного поля в соленоиде. Плотность энергии магнитного поля

Рассмотрим цепь, изображенную на рис. 67.1 (Сав. 195). При замкнутом ключе в соленоиде установится ток I, который обусловит магнитное поле, сцепленное с витками соленоида. Если разомкнуть ключ, то через сопротивление R будет некоторое время течь постепенно убывающий ток, поддерживаемый возникающей в соленоиде э. д. с. самоиндукции. Работа, совершаемая этим током за время dt, равна .

Если индуктивность соленоида не зависит от I (L=const), то =L dI и выражение

Проинтегрировав это выражение по l в пределах от первоначального значения I до нуля, получим работу, совершаемую в цепи за все время, в течение- которого происходит исчезновение магнитного поля, . Работа идет на приращение внутренней энергии сопротивления R, соленоида и соединительных проводов (т. е. на их нагревание). Совершение этой работы сопровождается исчезновением магнитного поля, которое первоначально существовало в окружающем соленоид пространстве. Поскольку никаких других изменений в окружающих электрическую цепь телах не происходит, ос-

тается заключить, что магнитное поле является носителем энергии, за счет которой и совершается работа.

Таким образом, мы приходим к выводу, что проводник с индуктивностью L, по которому течет ток силы I, обладает энергией ,

которая локализована в возбуждаемом током магнитном поле.

Выразим энергию магнитного поля через величины, характеризующие само поле. В случае очень длинного (практически бесконечного) соленоида . Подставив эти значения L и I в выражение и произведя преобразования, получим

Магнитное поле бесконечно длинного соленоида однородно и отлично от нуля только внутри соленоида. Следовательно, энергия локализована внутри соленоида и распределена по его объему с постоянной плотностью w, которую можно найти, разделив W на V. Произведя это деление, получим

Плотность энергии магнитного поля можно записать в виде .

Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенную в любом объеме V. Для этого нужно вычислить интеграл .

Квазистационарный переменный электрический ток. Условие квазистационарности. Закон Ома для цепей квазистационарных токов. Активное и реактивное (емкостное, индуцированное) сопротивления, их зависимость от частоты тока.

В цепях постоянного тока распределение электрических зарядов на проводниках и токов на участках цепи стационарно, то есть неизменно во времени. Если на каком-то участке цепи происходят изменения силы тока или напряжения, то другие участки цепи могут «почувствовать» эти изменения только через некоторое время, которое по порядку величины равно времени τ распространения электромагнитного возмущения от одной точки цепи к другой. Так как электромагнитные возмущения распространяются с конечной скоростью, равной скорости света c, то где l – расстояние между наиболее удаленными точками цепи. Если это время τ много меньше длительности процессов, происходящих в цепи, то можно считать, что в каждый момент времени сила тока одинакова во всех последовательно соединенных участках цепи. Процессы такого рода в электрических цепях называются квазистационарными.

Квазистационарные процессы можно исследовать с помощью законов постоянного тока, если применять эти законы к мгновенным значениям сил токов и напряжений на участках цепи.

. Из-за огромного значения скорости света время установления электрического равновесия в цепи оказывается весьма малым. Поэтому к квазистационарным можно отнести многие достаточно быстрые в обычном смысле процессы. Например, быстрые колебания в радиотехнических цепях с частотами порядка миллиона колебаний в секунду и даже выше очень часто еще можно рассматривать как квазистационарные

Простыми примерами квазистационарных процессов могут служить процессы, происходящие в RC- и RL-цепях при подключении и отключении источника постоянного тока.

При рассмотрении электрических колебаний приходится иметь дело с токами, изменяющимися со временем. Токи, удовлетворяющие такому условию, называются квазистационарными. Для периодически изменяющихся токов условие квазистационарности имеет вид , где Т — период изменений.

Квазистационарный ток - относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов (прямая пропорциональность между током и напряжением.

Подобно постоянным токам, К. т. имеет одинаковую силу тока во всех сечениях неразветвлённой цепи Однако при расчёте К. т. (в отличие от расчёта цепей постоянного тока) необходимо учитывать возникающую при изменениях тока эдс индукции. Индуктивности, ёмкости, сопротивления ветвей цепи К. т. могут считаться сосредоточенными параметрами.

Соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности:

 
(*)

.

Соотношения (*) выражают закон Ома для участка цепи переменного тока, содержащего один из элементов R, L и C.

Физические величины R, и ωL называются активным сопротивлением резистора, емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: