Сила гравитационного притяжения. Однородная сила тяжести

Гравитационное взаимодействие − самое слабое из четырёх фундаментальных взаимодействий. Согласно закону всемирного тяготения Ньютона сила гравитационного взаимодействия Fg двух точечных масс m1 и m2 равна

G = 6.67·10-11 м3· кг–1·см–2 − гравитационная постоянная, r − расстояние между взаимодействующими массами m1 и m2. Отношение силы гравитационного взаимодействия между двумя протонами к силе кулоновского электростатического взаимодействия между ними равно 10-36.
Величина G1/2·m называется гравитационным зарядом. Гравитационный заряд пропорционален массе тела. Поэтому для нерелятивистского случая согласно закону Ньютона ускорение, вызываемое силой гравитационного взаимодействия Fg, не зависит от массы ускоряемого тела. Это утверждение составляет принцип эквивалентности.
Фундаментальное свойство гравитационного поля состоит в том, что оно определяет геометрию пространства-времени, в котором движется материя. По современным представлениям взаимодействие между частицами происхо­дит путём обмена между ними частицами – переносчиками взаимодействия. Считается, что переносчиком гравитационного взаимодействия является гравитон − частица со спином J = 2. Экспериментально гравитон не обнаружен. Квантовая теория гравитации пока не создана.

Рассмотрим гравитационное взаимодействие между однородной сферой радиуса R, и массы М и материальной точкой массы m, находящейся на расстоянии r от центра сферы (рис. 116).

 

 

рис. 116


 В соответствии с вышеизложенной методикой расчета сил, необходимо разбить сферу на малые участки и просуммировать силы, действующие на материальную точку со стороны всех участков сферы. Такое суммирование впервые было проведено И. Ньютоном. Не вдаваясь в математические тонкости проведенного расчета, приведем окончательный результат: результирующая сила направлена к центру шара (что вполне очевидно), а величина этой силы определяется формулой

 


 Иными словами, сила взаимодействия оказалась такой же, как сила взаимодействия двух точечных тел, одно из которых помещено в центр сферы и его масса равна массе сферы. Существенным в этом расчете оказалось то обстоятельство, что сила гравитационного взаимодействия обратно пропорциональна квадрату расстояния между точечными телами, при любой другой зависимости силы от расстояния приведенный результат расчета оказался бы неверным.
 Полученный вывод очевидным образом обобщается на взаимодействие точечного заряда и однородного шара. Для доказательства достаточно разбить шар на тонкие сферические слои.
 Аналогично можно показать, что сила гравитационного взаимодействия между двумя сферически симметричными телами равна силе взаимодействия между материальными точками таких же масс, расположенных в центрах тел. То есть при расчете гравитационного взаимодействия сферически симметричные тела можно считать материальными точками, расположенными в центрах этих тел, независимо от размеров самих тел и расстояния между ними (рис. 117).

 

 

рис. 117


 Применим полученные результат к силе, действующей на все тела, находящиеся у поверхности Земли. Пусть тело массой m находится на высоте h над поверхностью Земли. С хорошей точностью форму Земли можно считать шарообразной, поэтому сила, действующая на тело со стороны Земли, направлена к ее центру, а модуль этой силы выражается формулой

 


где М − масса Земли, R − ее радиус. Известно, что средний радиус Земли равен: R ≈ 6350 км. Если тело находится на небольших высотах по сравнению с радиусом Земли, то высотой подъема тела можно пренебречь и в этом случае сила притяжения оказывается равной:

 


где обозначено

 

Гравитационная сила, действующая на все тела у поверхности Земли, называется силой тяжести. Векторы ускорения свободного падения в различных точках не параллельны, так как направлены к центру Земли. Однако если рассматривать точки, находящиеся на небольшой, по сравнению с радиусом Земли, высоте, то можно пренебречь различием в направлениях ускорения свободного падения и считать, что во всех точках рассматриваемой области вблизи поверхности Земли вектор ускорения постоянен как по величине, так и по направлению (рис. 118).

 

рис. 118


 В рамках такого приближения мы будем называть силу тяжести однородной.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: