Принцип Паули.Распределение электронов в атоме по состояниям.Периодическая система Менделеева

При́нципПа́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона (частиц с полуцелым спином) не могут одновременно находиться в одном квантовом состоянии. Распределение электронов в атоме происходит по принципу Паули, который может быть сформулирован для атома в простейшем виде: в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел: n, l,m,ms

Металлические свойства элементов в группе сверху вниз усиливаются, т.к. увеличивается количество энергетических уровней, отсюда увеличивается радиус атома, ослабевает притяжение электронов последнего энергетического уровня, уменьшается электроотрицательность, и следовательно усиливаются металлические свойства.
В периоде от начала периода к концу металлические свойства ослабевают Т.К. возрастает заряд ядра атома элемента, усиливается притяжение электронов последнего энергетического уровня, возрастает электроотрицательность и ослабевают металлические свойства.

38 Соотношение неопределенностей и его физический смысл

Если имеется несколько (много) идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённомураспределению вероятности — это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения координаты и среднеквадратического отклонения импульса, мы найдем что: где ħ — приведённая постоянная Планка. Предыдущие математические результаты показывают, как найти соотношения неопределённостей между физическими переменными, а именно, определить значения пар переменных и , коммутатор которых имеет определённые аналитические свойства.

самое известное отношение неопределённости — между координатой и импульсом частицы в пространстве:

отношение неопределённости между двумя ортогональными компонентами оператора полного углового момента частицы:

где различны и обозначает угловоймомент вдоль оси .следующее отношение неопределённости между энергией и временем часто представляется в учебниках физики, хотя его интерпретация требует осторожности, так как не существует оператора, представляющего время:

Следует подчеркнуть, что для выполнения условий теоремы, необходимо, чтобы оба самосопряженных оператора были определены на одном и том же множестве функций. Примером пары операторов, для которых это условие нарушается, может служить оператор проекции углового момента и оператор азимутального угла . Первый из них является самосопряженным только на множестве 2π-периодичных функций, в то время как оператор , очевидно, выводит из этого множества. Для решения возникшей проблемы можно вместо взять , что приведет к следующей форме принципа неопределенности[** 1]:

Однако, при условие периодичности несущественно и принцип неопределенности принимает привычный вид:

.

39 Заряд,масса и размеры атомных ядер.Зарядовые и массовые числа.Механический момент импульса ядра и его магнитный момент.Составядра.Нуклоны. атомные ядра имеют размеры примерно 10-14 -10-15 м (линейные размеры атома примерно 10~10 м). Атомное ядро состоит из элементарных частиц - протонов и нейтронов (протон-но-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко (р. 1904), а впоследствии развита В. Гейзенбергом).

Протон (р) имеет положительный заряд, равный заряду электрона, и массу покоя mp = 1,6726× 10- 27 кг»1836 те, где те - масса электрона. Нейтрон (n) - нейтральная частица с массой покоя тп- 1,6749× 10- 27 кг»1839 те. Протоны и нейтроны называются нуклонами (от лат. nucleus - ядро). Общее число нуклонов в атомном ядре называется массовым числом А. Атомное ядро характеризуется зарядом Ze, где Z - зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева. Известные в настоящее время 107 элементов таблицы Менделеева имеют зарядовые числа ядер от Z= 1 до Z= 107.

Ядро обозначается тем же символом, что и нейтральный атом: AZХ, где X - символ химического элемента, Z - атомный номер (число протонов в ядре), А - массовое число (число нуклонов в ядре).

Орбитальный механический момент импульса атома равен геометрической (векторной) сумме орбитальных моментов всех электронов атома: , Z – число электронов.

4. Орбитальный магнитный момент импульса атома равен геометрической (векторной) сумме магнитных моментов всех электронов атома: Нукло́ны (от лат. nucleus — ядро) — общее название для протонов и нейтронов.С точки зрения электромагнитного взаимодействия протон и нейтрон разные частицы, так как протон электрически заряжен, а нейтрон — нет. Однако с точки зрениясильного взаимодействия, которое является определяющим в масштабе атомных ядер, эти частицы неразличимы, поэтому и был введен термин «нуклон», а протон и нейтрон стали рассматриваться как два различных состояния нуклона, различающихся проекцией изотопического спина. Близость свойств изоспиновых состояний нуклона является одним из проявлений изотопической инвариантности

40 Радиоактивность. Закон радиоактивного распада.Закономерностипроисхождения α- β-и γ-излучения атомных ядер.Правила смещения

РАДИОАКТИВНОСТЬ-самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения.

Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награжден Нобелевской премией. Они обнаружили его экспериментальным путём и опубликовали в 1903 году в работах «Сравнительное изучение радиоактивности радия и тория»[1] и «Радиоактивное превращение»[2], сформулировав следующим образом[3]:

Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии.из чего с помощью теоремы Бернулли учёные сделали вывод[ источник не указан 531 день ]:

Скорость превращения всё время пропорциональна количеству систем, еще не подвергнувшихся превращению.

Существует несколько формулировок закона, например, в виде дифференциального уравнения:

которое означает, что число распадов − dN, произошедшее за короткий интервал времени dt, пропорционально числу атомов N в образце.

α-распад. Этот тип распада обычно наблюдается в тяжелых неустойчивых ядрах. При этом разрушается атомное ядро X ("материнское ядро"), образуется α-частица и новое ядро Y ("дочернее ядро"). α-частица представляет собой ядро гелия, имеющее два протона и два нейтрона:
ZXAZ-2YA-4+2α4;2α4=2He4

β-распад наблюдается в неустойчивых изотопах более легких ядер (гидроген, натрий, азот и т.п.). β -частица испускается материнским ядром и образуется дочернее ядро. Есть три типа β -распада: электронный β - распад, позитронный β - распад и электронный захват.
a) электронный β -распад: из материнского ядра образуется электрон (-1β 0-частица). Атомный номер дочернего ядра повышается на единицу по сравнению с материнским ядром. Также образуется антинейтрино – незаряженная частица, практически не имеющая массы - v:
ZXAZ+1YA+-1β0+v
b) позитронный β - распад из материнского ядра испускаются позитрон (+1β -частица) и нейтрино (v). Атомный номер дочернего ядра уменьшается на единицу по сравнению с материнским:
ZXAZ-1YA++1β0+v c) электронный захват. Один из атомных электронов взаимодействует с ядром (чаще всего с К -уровня, но может и с L -, M - уровней) и захватывается им. В результате протон ядра превращается в нейтрон:
ZXA+-1e0= Z-1YA+ v

Явление γ-излучения ядер состоит в том, что ядро (A,Z) испускает g квант без изменения массового числа А и заряда ядра Z. Испускание γ-излучения обычно происходит после α- или β-распадов атомных ядер, если образовавшееся ядро образуется в возбужденном состоянии.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: